use serde and bincode for serialization

This commit is contained in:
Andrew Dirksen 2019-05-09 17:31:10 -07:00
parent 16f7b38446
commit bcfd6b49ba
4 changed files with 55 additions and 232 deletions

View file

@ -6,8 +6,6 @@ edition = "2018"
license = "MIT OR Apache-2.0" license = "MIT OR Apache-2.0"
[dependencies] [dependencies]
byteorder = "1.3.1"
sha2 = "0.8.0" sha2 = "0.8.0"
serde = { version = "1", features = ["derive"] }
[dev-dependencies] bincode = "1.1.3"
rand = "0.6.5"

View file

@ -1,4 +1,3 @@
mod network_byte_order;
mod proof_of_work; mod proof_of_work;
pub use proof_of_work::ProofOfWork; pub use proof_of_work::Pow;

View file

@ -1,211 +0,0 @@
// "Ne" is short for Network Endian
use byteorder::{ByteOrder, NetworkEndian};
use std::convert::TryInto;
use std::marker::Sized;
use std::mem::size_of;
/// Serialize to network endian encoded bytes.
pub trait ToNe: Sized {
/// Write self into dest and return rest, if self is too large to fit in dest, return None
fn put<'a>(&self, dest: &'a mut [u8]) -> Option<&'a mut [u8]>;
/// Returns the size of self when serialized.
/// Panics will occur If the return value of this function is too small.
fn size(&self) -> usize;
/// Serialize self to a Vec.
///
/// # Panics
///
/// This function will panic it the size reported by [`size`] is incorrect.
fn serialize_to_vec(&self) -> Vec<u8> {
let mut ret = vec![0u8; self.size()];
let rest = self
.put(&mut ret)
.expect("object serialized was larger than reported");
if !rest.is_empty() {
panic!("object serialized was smaller than reported");
}
ret
}
}
/// Serialize to/from network endian encoded bytes.
pub trait Ne: ToNe {
/// Parse bytes as network endian. Return parsed value and unparsed bytes.
/// If src is not long enough, return None.
fn pick(src: &[u8]) -> Option<(Self, &[u8])>;
}
impl ToNe for u128 {
fn put<'a>(&self, dest: &'a mut [u8]) -> Option<&'a mut [u8]> {
let (mut head, rest) = safe_split_mut(dest, size_of::<Self>())?;
NetworkEndian::write_u128(&mut head, *self);
Some(rest)
}
fn size(&self) -> usize {
size_of::<Self>()
}
}
impl Ne for u128 {
fn pick(src: &[u8]) -> Option<(Self, &[u8])> {
let (head, rest) = take_sized::<[u8; 16]>(src)?;
Some((NetworkEndian::read_u128(&head), rest))
}
}
impl<T: ToNe> ToNe for &T {
fn put<'a>(&self, dest: &'a mut [u8]) -> Option<&'a mut [u8]> {
(*self).put(dest)
}
fn size(&self) -> usize {
(*self).size()
}
}
impl<T: ToNe, S: ToNe> ToNe for (T, S) {
fn put<'a>(&self, dest: &'a mut [u8]) -> Option<&'a mut [u8]> {
let (t, s) = self;
let dest = t.put(dest)?;
let dest = s.put(dest)?;
Some(dest)
}
fn size(&self) -> usize {
let (t, s) = self;
ToNe::size(t) + ToNe::size(s)
}
}
impl<T: Ne, S: Ne> Ne for (T, S) {
fn pick(src: &[u8]) -> Option<(Self, &[u8])> {
let (t, src) = T::pick(src)?;
let (s, src) = S::pick(src)?;
Some(((t, s), src))
}
}
impl<A: ToNe, B: ToNe, C: ToNe, D: ToNe> ToNe for (A, B, C, D) {
fn put<'a>(&self, dest: &'a mut [u8]) -> Option<&'a mut [u8]> {
let (a, b, c, d) = self;
let dest = a.put(dest)?;
let dest = b.put(dest)?;
let dest = c.put(dest)?;
let dest = d.put(dest)?;
Some(dest)
}
fn size(&self) -> usize {
let (a, b, c, d) = self;
ToNe::size(a) + ToNe::size(b) + ToNe::size(c) + ToNe::size(d)
}
}
impl<A: Ne, B: Ne, C: Ne, D: Ne> Ne for (A, B, C, D) {
fn pick(src: &[u8]) -> Option<(Self, &[u8])> {
let (a, src) = A::pick(src)?;
let (b, src) = B::pick(src)?;
let (c, src) = C::pick(src)?;
let (d, src) = D::pick(src)?;
Some(((a, b, c, d), src))
}
}
impl ToNe for Vec<u8> {
fn put<'a>(&self, dest: &'a mut [u8]) -> Option<&'a mut [u8]> {
put(self.as_ref(), dest)
}
fn size(&self) -> usize {
self.len()
}
}
impl Ne for Vec<u8> {
fn pick(src: &[u8]) -> Option<(Self, &[u8])> {
Some((src.to_vec(), &[]))
}
}
/// Split src at n index or None if src.len() < n.
fn safe_split(src: &[u8], n: usize) -> Option<(&[u8], &[u8])> {
if src.len() >= n {
Some(src.split_at(n))
} else {
None
}
}
/// Split src at n index or None if src.len() < n.
fn safe_split_mut(src: &mut [u8], n: usize) -> Option<(&mut [u8], &mut [u8])> {
if src.len() >= n {
Some(src.split_at_mut(n))
} else {
None
}
}
/// Split src on at n index or None if src.len() < n.
fn take_sized<'a, T>(src: &'a [u8]) -> Option<(T, &'a [u8])>
where
&'a [u8]: TryInto<T>,
{
let (head, tail) = safe_split(src, size_of::<T>())?;
let ret = head.try_into().ok();
debug_assert!(ret.is_some());
Some((ret?, tail))
}
/// Write src into dest, return unwriten bytes or None if dest is not long enough.
fn put<'a>(src: &[u8], dest: &'a mut [u8]) -> Option<(&'a mut [u8])> {
let (head, tail) = safe_split_mut(dest, src.len())?;
head.copy_from_slice(src);
Some(tail)
}
#[cfg(test)]
mod tests {
use super::*;
use rand::random;
use std::fmt::Debug;
fn ser<T: ToNe>(t: T) {
t.serialize_to_vec();
}
fn ser_deser<T: Ne + PartialEq + Debug>(t: T) {
let v = t.serialize_to_vec();
let (t2, rest) = T::pick(&v).unwrap();
assert_eq!(rest.len(), 0);
assert_eq!(t, t2);
}
fn rand_vecu8() -> Vec<u8> {
(0..(random::<usize>() % 265)).map(|_| random()).collect()
}
#[test]
fn sd_u128() {
ser_deser::<u128>(random());
ser::<&u128>(&random());
}
#[test]
fn sd_2t() {
ser_deser::<(u128, u128)>(random());
}
#[test]
fn sd_4t() {
ser_deser::<(u128, u128, u128, u128)>(random());
}
#[test]
fn sd_vu8() {
ser_deser(rand_vecu8());
}
}

View file

@ -1,20 +1,30 @@
use crate::network_byte_order::Ne; use serde::{Deserialize, Serialize};
use sha2::{digest::FixedOutput, Digest, Sha256}; use sha2::{digest::FixedOutput, Digest, Sha256};
use std::marker::PhantomData; use std::marker::PhantomData;
pub struct ProofOfWork<T: Ne> { const SALT: &'static str = "35af8f4890981391c191e6df45b5f780812ddf0213f29299576ac1c98e18173e";
#[derive(Serialize, Deserialize, PartialEq, Clone, Copy, Debug)]
pub struct Pow<T: Serialize> {
proof: u128, proof: u128,
_spook: PhantomData<T>, _spook: PhantomData<T>,
} }
impl<T: Ne> ProofOfWork<T> { // prove_work and score could theoretically be without allocations, by serializing to a Write
// implementaion that performs sha256 lazily.
// `impl io::Write for sha2::Sha256 { ... }`
impl<T: Serialize> Pow<T> {
/// Prove work over T. /// Prove work over T.
/// ///
/// Make sure difficulty is not too high. A 64 bit difficulty, for example, takes a long time /// Make sure difficulty is not too high. A 64 bit difficulty, for example, takes a long time
/// on a general purpose processor. /// on a general purpose processor.
pub fn prove_work(t: &T, difficulty: u32) -> ProofOfWork<T> { ///
let v = t.serialize_to_vec(); /// Returns bincode::Error if serialization fails.
Self::prove_work_serialized(&v, difficulty) pub fn prove_work(t: &T, difficulty: u32) -> bincode::Result<Pow<T>> {
bincode_cfg()
.serialize(t)
.map(|v| Self::prove_work_serialized(&v, difficulty))
} }
/// Prove work on an already serialized item of type T. /// Prove work on an already serialized item of type T.
@ -22,29 +32,30 @@ impl<T: Ne> ProofOfWork<T> {
/// ///
/// Make sure difficulty is not too high. A 64 bit difficulty, for example, takes a long time /// Make sure difficulty is not too high. A 64 bit difficulty, for example, takes a long time
/// on a general purpose processor. /// on a general purpose processor.
pub fn prove_work_serialized(prefix: &[u8], difficulty: u32) -> ProofOfWork<T> { pub fn prove_work_serialized(prefix: &[u8], difficulty: u32) -> Pow<T> {
debug_assert!(difficulty <= 256); debug_assert!(difficulty <= 256);
let prefix_sha = Sha256::new().chain(prefix); let prefix_sha = Sha256::new().chain(SALT).chain(prefix);
let mut n = 0; let mut n = 0;
while score(prefix_sha.clone(), n) < difficulty { while score(prefix_sha.clone(), n) < difficulty {
n += 1; n += 1;
} }
ProofOfWork { Pow {
proof: n, proof: n,
_spook: PhantomData, _spook: PhantomData,
} }
} }
/// Calculate the pow score of t and self. /// Calculate the pow score of t and self.
pub fn score(&self, t: &T) -> u32 { pub fn score(&self, t: &T) -> bincode::Result<u32> {
let v = t.serialize_to_vec(); bincode_cfg()
self.score_serialized(&v) .serialize(t)
.map(|v| self.score_serialized(&v))
} }
/// Calculate the pow score of an already serialized T and self. /// Calculate the pow score of an already serialized T and self.
/// The input is assumed to be serialized using network byte order. /// The input is assumed to be serialized using network byte order.
pub fn score_serialized(&self, target: &[u8]) -> u32 { pub fn score_serialized(&self, target: &[u8]) -> u32 {
score(Sha256::new().chain(target), self.proof) score(Sha256::new().chain(SALT).chain(target), self.proof)
} }
} }
@ -70,6 +81,12 @@ fn leading_zeros(inp: &[u8]) -> u32 {
return ret; return ret;
} }
fn bincode_cfg() -> bincode::Config {
let mut cfg = bincode::config();
cfg.big_endian();
cfg
}
#[cfg(test)] #[cfg(test)]
mod test { mod test {
use super::*; use super::*;
@ -80,7 +97,27 @@ mod test {
fn base_functionality() { fn base_functionality() {
// Let's prove we did work targeting a phrase. // Let's prove we did work targeting a phrase.
let phrase = b"Corver bandar palladianism retroform.".to_vec(); let phrase = b"Corver bandar palladianism retroform.".to_vec();
let pw = ProofOfWork::prove_work(&phrase, DIFFICULTY); let pw = Pow::prove_work(&phrase, DIFFICULTY).unwrap();
assert!(pw.score(&phrase) >= DIFFICULTY); assert!(pw.score(&phrase).unwrap() >= DIFFICULTY);
}
#[test]
fn double_pow() {
let phrase = "Corver bandar palladianism retroform.".to_owned();
let pow = Pow::prove_work(&phrase, DIFFICULTY).unwrap();
let powpow: Pow<Pow<String>> = Pow::prove_work(&pow, DIFFICULTY).unwrap();
assert!(pow.score(&phrase).unwrap() >= DIFFICULTY);
assert!(powpow.score(&pow).unwrap() >= DIFFICULTY);
}
#[test]
fn ser_de() {
let target: u8 = 1;
let pw = Pow::prove_work(&target, DIFFICULTY).unwrap();
let message: (u8, Pow<u8>) = (target, pw);
let message_ser = bincode_cfg().serialize(&message).unwrap();
let recieved_message: (u8, Pow<u8>) = bincode_cfg().deserialize(&message_ser).unwrap();
assert_eq!(recieved_message, message);
assert!(message.1.score(&message.0).unwrap() >= DIFFICULTY);
} }
} }