110 KiB
stage | group | info |
---|---|---|
Enablement | Distribution | To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments |
Reference architecture: up to 50,000 users (PREMIUM SELF)
This page describes GitLab reference architecture for up to 50,000 users. For a full list of reference architectures, see Available reference architectures.
- Supported users (approximate): 50,000
- High Availability: Yes (Praefect needs a third-party PostgreSQL solution for HA)
- Test requests per second (RPS) rates: API: 1000 RPS, Web: 100 RPS, Git (Pull): 100 RPS, Git (Push): 20 RPS
- Latest 50k weekly performance testing results
Service | Nodes | Configuration | GCP | AWS | Azure |
---|---|---|---|---|---|
External load balancing node3 | 1 | 8 vCPU, 7.2 GB memory | n1-highcpu-8 |
c5.2xlarge |
F8s v2 |
Consul1 | 3 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 |
c5.large |
F2s v2 |
PostgreSQL1 | 3 | 32 vCPU, 120 GB memory | n1-standard-32 |
m5.8xlarge |
D32s v3 |
PgBouncer1 | 3 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 |
c5.large |
F2s v2 |
Internal load balancing node3 | 1 | 8 vCPU, 7.2 GB memory | n1-highcpu-8 |
c5.2xlarge |
F8s v2 |
Redis - Cache2 | 3 | 4 vCPU, 15 GB memory | n1-standard-4 |
m5.xlarge |
D4s v3 |
Redis - Queues / Shared State2 | 3 | 4 vCPU, 15 GB memory | n1-standard-4 |
m5.xlarge |
D4s v3 |
Redis Sentinel - Cache2 | 3 | 1 vCPU, 3.75 GB memory | n1-standard-1 |
c5.large |
A1 v2 |
Redis Sentinel - Queues / Shared State2 | 3 | 1 vCPU, 3.75 GB memory | n1-standard-1 |
c5.large |
A1 v2 |
Gitaly | 3 | 64 vCPU, 240 GB memory | n1-standard-64 |
m5.16xlarge |
D64s v3 |
Praefect | 3 | 4 vCPU, 3.6 GB memory | n1-highcpu-4 |
c5.xlarge |
F4s v2 |
Praefect PostgreSQL1 | 1+ | 2 vCPU, 1.8 GB memory | n1-highcpu-2 |
c5.large |
F2s v2 |
Sidekiq | 4 | 4 vCPU, 15 GB memory | n1-standard-4 |
m5.xlarge |
D4s v3 |
GitLab Rails | 12 | 32 vCPU, 28.8 GB memory | n1-highcpu-32 |
c5.9xlarge |
F32s v2 |
Monitoring node | 1 | 4 vCPU, 3.6 GB memory | n1-highcpu-4 |
c5.xlarge |
F4s v2 |
Object storage4 | n/a | n/a | n/a | n/a | n/a |
NFS server (optional, not recommended) | 1 | 4 vCPU, 3.6 GB memory | n1-highcpu-4 |
c5.xlarge |
F4s v2 |
- Can be optionally run on reputable third-party external PaaS PostgreSQL solutions. Google Cloud SQL and AWS RDS are known to work, however Azure Database for PostgreSQL is not recommended due to performance issues. Consul is primarily used for PostgreSQL high availability so can be ignored when using a PostgreSQL PaaS setup. However it is also used optionally by Prometheus for Omnibus auto host discovery.
- Can be optionally run on reputable third-party external PaaS Redis solutions. Google Memorystore and AWS Elasticache are known to work.
- Can be optionally run on reputable third-party load balancing services (LB PaaS). AWS ELB is known to work.
- Should be run on reputable third-party object storage (storage PaaS) for cloud implementations. Google Cloud Storage and AWS S3 are known to work.
NOTE: For all PaaS solutions that involve configuring instances, it is strongly recommended to implement a minimum of three nodes in three different availability zones to align with resilient cloud architecture practices.
@startuml 50k
card "**External Load Balancer**" as elb #6a9be7
card "**Internal Load Balancer**" as ilb #9370DB
together {
collections "**GitLab Rails** x12" as gitlab #32CD32
collections "**Sidekiq** x4" as sidekiq #ff8dd1
}
together {
card "**Prometheus + Grafana**" as monitor #7FFFD4
collections "**Consul** x3" as consul #e76a9b
}
card "Gitaly Cluster" as gitaly_cluster {
collections "**Praefect** x3" as praefect #FF8C00
collections "**Gitaly** x3" as gitaly #FF8C00
card "**Praefect PostgreSQL***\n//Non fault-tolerant//" as praefect_postgres #FF8C00
praefect -[#FF8C00]-> gitaly
praefect -[#FF8C00]> praefect_postgres
}
card "Database" as database {
collections "**PGBouncer** x3" as pgbouncer #4EA7FF
card "**PostgreSQL** (Primary)" as postgres_primary #4EA7FF
collections "**PostgreSQL** (Secondary) x2" as postgres_secondary #4EA7FF
pgbouncer -[#4EA7FF]-> postgres_primary
postgres_primary .[#4EA7FF]> postgres_secondary
}
card "redis" as redis {
collections "**Redis Persistent** x3" as redis_persistent #FF6347
collections "**Redis Cache** x3" as redis_cache #FF6347
collections "**Redis Persistent Sentinel** x3" as redis_persistent_sentinel #FF6347
collections "**Redis Cache Sentinel** x3"as redis_cache_sentinel #FF6347
redis_persistent <.[#FF6347]- redis_persistent_sentinel
redis_cache <.[#FF6347]- redis_cache_sentinel
}
cloud "**Object Storage**" as object_storage #white
elb -[#6a9be7]-> gitlab
elb -[#6a9be7]--> monitor
gitlab -[#32CD32]--> ilb
gitlab -[#32CD32]-> object_storage
gitlab -[#32CD32]---> redis
gitlab -[hidden]-> monitor
gitlab -[hidden]-> consul
sidekiq -[#ff8dd1]--> ilb
sidekiq -[#ff8dd1]-> object_storage
sidekiq -[#ff8dd1]---> redis
sidekiq -[hidden]-> monitor
sidekiq -[hidden]-> consul
ilb -[#9370DB]-> gitaly_cluster
ilb -[#9370DB]-> database
consul .[#e76a9b]u-> gitlab
consul .[#e76a9b]u-> sidekiq
consul .[#e76a9b]> monitor
consul .[#e76a9b]-> database
consul .[#e76a9b]-> gitaly_cluster
consul .[#e76a9b,norank]--> redis
monitor .[#7FFFD4]u-> gitlab
monitor .[#7FFFD4]u-> sidekiq
monitor .[#7FFFD4]> consul
monitor .[#7FFFD4]-> database
monitor .[#7FFFD4]-> gitaly_cluster
monitor .[#7FFFD4,norank]--> redis
monitor .[#7FFFD4]> ilb
monitor .[#7FFFD4,norank]u--> elb
@enduml
The Google Cloud Platform (GCP) architectures were built and tested using the Intel Xeon E5 v3 (Haswell) CPU platform. On different hardware you may find that adjustments, either lower or higher, are required for your CPU or node counts. For more information, see our Sysbench-based CPU benchmarks.
Due to better performance and availability, for data objects (such as LFS, uploads, or artifacts), using an object storage service is recommended instead of using NFS. Using an object storage service also doesn't require you to provision and maintain a node.
It's also worth noting that at this time Praefect requires its own database server and
that to achieve full High Availability a third-party PostgreSQL database solution will be required.
We hope to offer a built in solutions for these restrictions in the future but in the meantime a non HA PostgreSQL server
can be set up via Omnibus GitLab, which the above specs reflect. Refer to the following issues for more information: omnibus-gitlab#5919
& gitaly#3398
Setup components
To set up GitLab and its components to accommodate up to 50,000 users:
- Configure the external load balancer to handle the load balancing of the GitLab application services nodes.
- Configure the internal load balancer. to handle the load
- Configure Consul.
- Configure PostgreSQL, the database for GitLab.
- Configure PgBouncer.
- Configure Redis.
- Configure Gitaly Cluster, provides access to the Git repositories.
- Configure Sidekiq.
- Configure the main GitLab Rails application to run Puma, Workhorse, GitLab Shell, and to serve all frontend requests (which include UI, API, and Git over HTTP/SSH).
- Configure Prometheus to monitor your GitLab environment.
- Configure the object storage used for shared data objects.
- Configure Advanced Search (optional) for faster, more advanced code search across your entire GitLab instance.
- Configure NFS (optional, and not recommended) to have shared disk storage service as an alternative to Gitaly or object storage. You can skip this step if you're not using GitLab Pages (which requires NFS).
The servers start on the same 10.6.0.0/24 private network range, and can connect to each other freely on these addresses.
The following list includes descriptions of each server and its assigned IP:
10.6.0.10
: External Load Balancer10.6.0.11
: Consul 110.6.0.12
: Consul 210.6.0.13
: Consul 310.6.0.21
: PostgreSQL primary10.6.0.22
: PostgreSQL secondary 110.6.0.23
: PostgreSQL secondary 210.6.0.31
: PgBouncer 110.6.0.32
: PgBouncer 210.6.0.33
: PgBouncer 310.6.0.40
: Internal Load Balancer10.6.0.51
: Redis - Cache Primary10.6.0.52
: Redis - Cache Replica 110.6.0.53
: Redis - Cache Replica 210.6.0.71
: Sentinel - Cache 110.6.0.72
: Sentinel - Cache 210.6.0.73
: Sentinel - Cache 310.6.0.61
: Redis - Queues Primary10.6.0.62
: Redis - Queues Replica 110.6.0.63
: Redis - Queues Replica 210.6.0.81
: Sentinel - Queues 110.6.0.82
: Sentinel - Queues 210.6.0.83
: Sentinel - Queues 310.6.0.91
: Gitaly 110.6.0.92
: Gitaly 210.6.0.93
: Gitaly 310.6.0.131
: Praefect 110.6.0.132
: Praefect 210.6.0.133
: Praefect 310.6.0.141
: Praefect PostgreSQL 1 (non HA)10.6.0.101
: Sidekiq 110.6.0.102
: Sidekiq 210.6.0.103
: Sidekiq 310.6.0.104
: Sidekiq 410.6.0.111
: GitLab application 110.6.0.112
: GitLab application 210.6.0.113
: GitLab application 310.6.0.114
: GitLab application 410.6.0.115
: GitLab application 510.6.0.116
: GitLab application 610.6.0.117
: GitLab application 710.6.0.118
: GitLab application 810.6.0.119
: GitLab application 910.6.0.120
: GitLab application 1010.6.0.121
: GitLab application 1110.6.0.122
: GitLab application 1210.6.0.151
: Prometheus
Configure the external load balancer
In a multi-node GitLab configuration, you'll need a load balancer to route traffic to the application servers. The specifics on which load balancer to use or its exact configuration is beyond the scope of GitLab documentation. We assume that if you're managing multi-node systems like GitLab, you already have a load balancer of choice and that the routing methods used are distributing calls evenly between all nodes. Some load balancer examples include HAProxy (open-source), F5 Big-IP LTM, and Citrix Net Scaler. This documentation outline the ports and protocols needed for use with GitLab.
This architecture has been tested and validated with HAProxy as the load balancer. Although other load balancers with similar feature sets could also be used, those load balancers have not been validated.
The next question is how you will handle SSL in your environment. There are several different options:
- The application node terminates SSL.
- The load balancer terminates SSL without backend SSL and communication is not secure between the load balancer and the application node.
- The load balancer terminates SSL with backend SSL and communication is secure between the load balancer and the application node.
Application node terminates SSL
Configure your load balancer to pass connections on port 443 as TCP
rather
than HTTP(S)
protocol. This will pass the connection to the application node's
NGINX service untouched. NGINX will have the SSL certificate and listen on port 443.
See the NGINX HTTPS documentation for details on managing SSL certificates and configuring NGINX.
Load balancer terminates SSL without backend SSL
Configure your load balancer to use the HTTP(S)
protocol rather than TCP
.
The load balancer will then be responsible for managing SSL certificates and
terminating SSL.
Since communication between the load balancer and GitLab will not be secure, there is some additional configuration needed. See the NGINX proxied SSL documentation for details.
Load balancer terminates SSL with backend SSL
Configure your load balancer(s) to use the 'HTTP(S)' protocol rather than 'TCP'. The load balancer(s) will be responsible for managing SSL certificates that end users will see.
Traffic will also be secure between the load balancer(s) and NGINX in this scenario. There is no need to add configuration for proxied SSL since the connection will be secure all the way. However, configuration will need to be added to GitLab to configure SSL certificates. See NGINX HTTPS documentation for details on managing SSL certificates and configuring NGINX.
Readiness checks
Ensure the external load balancer only routes to working services with built in monitoring endpoints. The readiness checks all require additional configuration on the nodes being checked, otherwise, the external load balancer will not be able to connect.
Ports
The basic ports to be used are shown in the table below.
LB Port | Backend Port | Protocol |
---|---|---|
80 | 80 | HTTP (1) |
443 | 443 | TCP or HTTPS (1) (2) |
22 | 22 | TCP |
- (1): Web terminal support requires
your load balancer to correctly handle WebSocket connections. When using
HTTP or HTTPS proxying, this means your load balancer must be configured
to pass through the
Connection
andUpgrade
hop-by-hop headers. See the web terminal integration guide for more details. - (2): When using HTTPS protocol for port 443, you will need to add an SSL certificate to the load balancers. If you wish to terminate SSL at the GitLab application server instead, use TCP protocol.
If you're using GitLab Pages with custom domain support you will need some
additional port configurations.
GitLab Pages requires a separate virtual IP address. Configure DNS to point the
pages_external_url
from /etc/gitlab/gitlab.rb
at the new virtual IP address. See the
GitLab Pages documentation for more information.
LB Port | Backend Port | Protocol |
---|---|---|
80 | Varies (1) | HTTP |
443 | Varies (1) | TCP (2) |
- (1): The backend port for GitLab Pages depends on the
gitlab_pages['external_http']
andgitlab_pages['external_https']
setting. See GitLab Pages documentation for more details. - (2): Port 443 for GitLab Pages should always use the TCP protocol. Users can configure custom domains with custom SSL, which would not be possible if SSL was terminated at the load balancer.
Alternate SSH Port
Some organizations have policies against opening SSH port 22. In this case, it may be helpful to configure an alternate SSH hostname that allows users to use SSH on port 443. An alternate SSH hostname will require a new virtual IP address compared to the other GitLab HTTP configuration above.
Configure DNS for an alternate SSH hostname such as altssh.gitlab.example.com
.
LB Port | Backend Port | Protocol |
---|---|---|
443 | 22 | TCP |
Configure the internal load balancer
The Internal Load Balancer is used to balance any internal connections the GitLab environment requires such as connections to PgBouncer and Praefect (Gitaly Cluster).
It's a separate node from the External Load Balancer and shouldn't have any access externally.
The following IP will be used as an example:
10.6.0.40
: Internal Load Balancer
Here's how you could do it with HAProxy:
global
log /dev/log local0
log localhost local1 notice
log stdout format raw local0
defaults
log global
default-server inter 10s fall 3 rise 2
balance leastconn
frontend internal-pgbouncer-tcp-in
bind *:6432
mode tcp
option tcplog
default_backend pgbouncer
frontend internal-praefect-tcp-in
bind *:2305
mode tcp
option tcplog
option clitcpka
default_backend praefect
backend pgbouncer
mode tcp
option tcp-check
server pgbouncer1 10.6.0.21:6432 check
server pgbouncer2 10.6.0.22:6432 check
server pgbouncer3 10.6.0.23:6432 check
backend praefect
mode tcp
option tcp-check
option srvtcpka
server praefect1 10.6.0.131:2305 check
server praefect2 10.6.0.132:2305 check
server praefect3 10.6.0.133:2305 check
Refer to your preferred Load Balancer's documentation for further guidance. Also ensure that the routing methods used are distributing calls evenly across all nodes.
Configure Consul
The following IPs will be used as an example:
10.6.0.11
: Consul 110.6.0.12
: Consul 210.6.0.13
: Consul 3
To configure Consul:
-
SSH in to the server that will host Consul.
-
Download and install the Omnibus GitLab package of your choice. Be sure to both follow only installation steps 1 and 2 on the page, and to select the correct Omnibus GitLab package, with the same version and type (Community or Enterprise editions) as your current install.
-
Edit
/etc/gitlab/gitlab.rb
and add the contents:roles(['consul_role']) ## Enable service discovery for Prometheus consul['monitoring_service_discovery'] = true ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { server: true, retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100' # Prevent database migrations from running on upgrade automatically gitlab_rails['auto_migrate'] = false
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
Reconfigure Omnibus GitLab for the changes to take effect.
-
Go through the steps again for all the other Consul nodes, and make sure you set up the correct IPs.
A Consul leader is elected when the provisioning of the third Consul server is
complete. Viewing the Consul logs sudo gitlab-ctl tail consul
displays
...[INFO] consul: New leader elected: ...
.
You can list the current Consul members (server, client):
sudo /opt/gitlab/embedded/bin/consul members
You can verify the GitLab services are running:
sudo gitlab-ctl status
The output should be similar to the following:
run: consul: (pid 30074) 76834s; run: log: (pid 29740) 76844s
run: logrotate: (pid 30925) 3041s; run: log: (pid 29649) 76861s
run: node-exporter: (pid 30093) 76833s; run: log: (pid 29663) 76855s
Configure PostgreSQL
In this section, you'll be guided through configuring an external PostgreSQL database to be used with GitLab.
Provide your own PostgreSQL instance
If you're hosting GitLab on a cloud provider, you can optionally use a managed service for PostgreSQL. For example, AWS offers a managed Relational Database Service (RDS) that runs PostgreSQL.
If you use a cloud-managed service, or provide your own PostgreSQL:
- Set up PostgreSQL according to the database requirements document.
- Set up a
gitlab
username with a password of your choice. Thegitlab
user needs privileges to create thegitlabhq_production
database. - Configure the GitLab application servers with the appropriate details. This step is covered in Configuring the GitLab Rails application.
See Configure GitLab using an external PostgreSQL service for further configuration steps.
Standalone PostgreSQL using Omnibus GitLab
The following IPs will be used as an example:
10.6.0.21
: PostgreSQL primary10.6.0.22
: PostgreSQL secondary 110.6.0.23
: PostgreSQL secondary 2
First, make sure to install
the Linux GitLab package on each node. Following the steps,
install the necessary dependencies from step 1, and add the
GitLab package repository from step 2. When installing GitLab
in the second step, do not supply the EXTERNAL_URL
value.
PostgreSQL nodes
-
SSH in to one of the PostgreSQL nodes.
-
Generate a password hash for the PostgreSQL username/password pair. This assumes you will use the default username of
gitlab
(recommended). The command will request a password and confirmation. Use the value that is output by this command in the next step as the value of<postgresql_password_hash>
:sudo gitlab-ctl pg-password-md5 gitlab
-
Generate a password hash for the PgBouncer username/password pair. This assumes you will use the default username of
pgbouncer
(recommended). The command will request a password and confirmation. Use the value that is output by this command in the next step as the value of<pgbouncer_password_hash>
:sudo gitlab-ctl pg-password-md5 pgbouncer
-
Generate a password hash for the PostgreSQL replication username/password pair. This assumes you will use the default username of
gitlab_replicator
(recommended). The command will request a password and a confirmation. Use the value that is output by this command in the next step as the value of<postgresql_replication_password_hash>
:sudo gitlab-ctl pg-password-md5 gitlab_replicator
-
Generate a password hash for the Consul database username/password pair. This assumes you will use the default username of
gitlab-consul
(recommended). The command will request a password and confirmation. Use the value that is output by this command in the next step as the value of<consul_password_hash>
:sudo gitlab-ctl pg-password-md5 gitlab-consul
-
On every database node, edit
/etc/gitlab/gitlab.rb
replacing values noted in the# START user configuration
section:# Disable all components except Patroni and Consul roles(['patroni_role']) # PostgreSQL configuration postgresql['listen_address'] = '0.0.0.0' # Sets `max_replication_slots` to double the number of database nodes. # Patroni uses one extra slot per node when initiating the replication. patroni['postgresql']['max_replication_slots'] = 6 # Set `max_wal_senders` to one more than the number of replication slots in the cluster. # This is used to prevent replication from using up all of the # available database connections. patroni['postgresql']['max_wal_senders'] = 7 # Incoming recommended value for max connections is 500. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691. patroni['postgresql']['max_connections'] = 500 # Prevent database migrations from running on upgrade automatically gitlab_rails['auto_migrate'] = false # Configure the Consul agent consul['enable'] = true consul['services'] = %w(postgresql) ## Enable service discovery for Prometheus consul['monitoring_service_discovery'] = true # START user configuration # Please set the real values as explained in Required Information section # # Replace PGBOUNCER_PASSWORD_HASH with a generated md5 value postgresql['pgbouncer_user_password'] = '<pgbouncer_password_hash>' # Replace POSTGRESQL_REPLICATION_PASSWORD_HASH with a generated md5 value postgresql['sql_replication_password'] = '<postgresql_replication_password_hash>' # Replace POSTGRESQL_PASSWORD_HASH with a generated md5 value postgresql['sql_user_password'] = '<postgresql_password_hash>' # Set up basic authentication for the Patroni API (use the same username/password in all nodes). patroni['username'] = '<patroni_api_username>' patroni['password'] = '<patroni_api_password>' # Replace 10.6.0.0/24 with Network Addresses for your other patroni nodes patroni['allowlist'] = %w(10.6.0.0/24 127.0.0.1/32) # Replace 10.6.0.0/24 with Network Address postgresql['trust_auth_cidr_addresses'] = %w(10.6.0.0/24 127.0.0.1/32) # Set the network addresses that the exporters will listen on for monitoring node_exporter['listen_address'] = '0.0.0.0:9100' postgres_exporter['listen_address'] = '0.0.0.0:9187' ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # # END user configuration
PostgreSQL, with Patroni managing its failover, will default to use pg_rewind
by default to handle conflicts.
Like most failover handling methods, this has a small chance of leading to data loss.
Learn more about the various Patroni replication methods.
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
Reconfigure GitLab for the changes to take effect.
Advanced configuration options are supported and can be added if needed.
PostgreSQL post-configuration
SSH in to any of the Patroni nodes on the primary site:
-
Check the status of the leader and cluster:
gitlab-ctl patroni members
The output should be similar to the following:
| Cluster | Member | Host | Role | State | TL | Lag in MB | Pending restart | |---------------|-----------------------------------|-----------|--------|---------|-----|-----------|-----------------| | postgresql-ha | <PostgreSQL primary hostname> | 10.6.0.21 | Leader | running | 175 | | * | | postgresql-ha | <PostgreSQL secondary 1 hostname> | 10.6.0.22 | | running | 175 | 0 | * | | postgresql-ha | <PostgreSQL secondary 2 hostname> | 10.6.0.23 | | running | 175 | 0 | * |
If the 'State' column for any node doesn't say "running", check the Troubleshooting section before proceeding.
Configure PgBouncer
Now that the PostgreSQL servers are all set up, let's configure PgBouncer. The following IPs will be used as an example:
10.6.0.31
: PgBouncer 110.6.0.32
: PgBouncer 210.6.0.33
: PgBouncer 3
-
On each PgBouncer node, edit
/etc/gitlab/gitlab.rb
, and replace<consul_password_hash>
and<pgbouncer_password_hash>
with the password hashes you set up previously:# Disable all components except Pgbouncer and Consul agent roles(['pgbouncer_role']) # Configure PgBouncer pgbouncer['admin_users'] = %w(pgbouncer gitlab-consul) pgbouncer['users'] = { 'gitlab-consul': { password: '<consul_password_hash>' }, 'pgbouncer': { password: '<pgbouncer_password_hash>' } } # Incoming recommended value for max db connections is 150. See https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5691. pgbouncer['max_db_connections'] = 150 # Configure Consul agent consul['watchers'] = %w(postgresql) consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13) } # Enable service discovery for Prometheus consul['monitoring_service_discovery'] = true # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100'
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
Reconfigure Omnibus GitLab for the changes to take effect.
If an error
execute[generate databases.ini]
occurs, this is due to an existing known issue. It will be resolved when you run a secondreconfigure
after the next step. -
Create a
.pgpass
file so Consul is able to reload PgBouncer. Enter the PgBouncer password twice when asked:gitlab-ctl write-pgpass --host 127.0.0.1 --database pgbouncer --user pgbouncer --hostuser gitlab-consul
-
Reconfigure GitLab once again to resolve any potential errors from the previous steps.
-
Ensure each node is talking to the current primary:
gitlab-ctl pgb-console # You will be prompted for PGBOUNCER_PASSWORD
-
Once the console prompt is available, run the following queries:
show databases ; show clients ;
The output should be similar to the following:
name | host | port | database | force_user | pool_size | reserve_pool | pool_mode | max_connections | current_connections ---------------------+-------------+------+---------------------+------------+-----------+--------------+-----------+-----------------+--------------------- gitlabhq_production | MASTER_HOST | 5432 | gitlabhq_production | | 20 | 0 | | 0 | 0 pgbouncer | | 6432 | pgbouncer | pgbouncer | 2 | 0 | statement | 0 | 0 (2 rows) type | user | database | state | addr | port | local_addr | local_port | connect_time | request_time | ptr | link | remote_pid | tls ------+-----------+---------------------+---------+----------------+-------+------------+------------+---------------------+---------------------+-----------+------+------------+----- C | pgbouncer | pgbouncer | active | 127.0.0.1 | 56846 | 127.0.0.1 | 6432 | 2017-08-21 18:09:59 | 2017-08-21 18:10:48 | 0x22b3880 | | 0 | (2 rows)
Configure Redis
Using Redis in scalable environment is possible using a Primary x Replica topology with a Redis Sentinel service to watch and automatically start the failover procedure.
Redis requires authentication if used with Sentinel. See Redis Security documentation for more information. We recommend using a combination of a Redis password and tight firewall rules to secure your Redis service. You are highly encouraged to read the Redis Sentinel documentation before configuring Redis with GitLab to fully understand the topology and architecture.
The requirements for a Redis setup are the following:
- All Redis nodes must be able to talk to each other and accept incoming
connections over Redis (
6379
) and Sentinel (26379
) ports (unless you change the default ones). - The server that hosts the GitLab application must be able to access the Redis nodes.
- Protect the nodes from access from external networks (Internet), using a firewall.
In this section, you'll be guided through configuring two external Redis clusters to be used with GitLab. The following IPs will be used as an example:
10.6.0.51
: Redis - Cache Primary10.6.0.52
: Redis - Cache Replica 110.6.0.53
: Redis - Cache Replica 210.6.0.71
: Sentinel - Cache 110.6.0.72
: Sentinel - Cache 210.6.0.73
: Sentinel - Cache 310.6.0.61
: Redis - Queues Primary10.6.0.62
: Redis - Queues Replica 110.6.0.63
: Redis - Queues Replica 210.6.0.81
: Sentinel - Queues 110.6.0.82
: Sentinel - Queues 210.6.0.83
: Sentinel - Queues 3
Providing your own Redis instance
Managed Redis from cloud providers (such as AWS ElastiCache) will work. If these services support high availability, be sure it isn't of the Redis Cluster type. Redis version 5.0 or higher is required, which is included with Omnibus GitLab packages starting with GitLab 13.0. Older Redis versions don't support an optional count argument to SPOP, which is required for Merge Trains. Note the Redis node's IP address or hostname, port, and password (if required). These will be necessary later when configuring the GitLab application servers.
Configure the Redis and Sentinel Cache cluster
This is the section where we install and set up the new Redis Cache instances.
Both the primary and replica Redis nodes need the same password defined in
redis['password']
. At any time during a failover, the Sentinels can reconfigure
a node and change its status from primary to replica (and vice versa).
Configure the primary Redis Cache node
-
SSH in to the Primary Redis server.
-
Download and install the Omnibus GitLab package of your choice. Be sure to both follow only installation steps 1 and 2 on the page, and to select the correct Omnibus GitLab package, with the same version and type (Community or Enterprise editions) as your current install.
-
Edit
/etc/gitlab/gitlab.rb
and add the contents:# Specify server role as 'redis_master_role' and enable Consul agent roles(['redis_master_role', 'consul_role']) # IP address pointing to a local IP that the other machines can reach to. # You can also set bind to '0.0.0.0' which listen in all interfaces. # If you really need to bind to an external accessible IP, make # sure you add extra firewall rules to prevent unauthorized access. redis['bind'] = '10.6.0.51' # Define a port so Redis can listen for TCP requests which will allow other # machines to connect to it. redis['port'] = 6379 # Set up password authentication for Redis (use the same password in all nodes). redis['password'] = 'REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER' # Set the Redis Cache instance as an LRU # 90% of available RAM in MB redis['maxmemory'] = '13500mb' redis['maxmemory_policy'] = "allkeys-lru" redis['maxmemory_samples'] = 5 ## Enable service discovery for Prometheus consul['monitoring_service_discovery'] = true ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100' redis_exporter['listen_address'] = '0.0.0.0:9121' redis_exporter['flags'] = { 'redis.addr' => 'redis://10.6.0.51:6379', 'redis.password' => 'redis-password-goes-here', } # Prevent database migrations from running on upgrade automatically gitlab_rails['auto_migrate'] = false
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
Reconfigure Omnibus GitLab for the changes to take effect.
You can specify multiple roles, like sentinel and Redis, as:
roles(['redis_sentinel_role', 'redis_master_role'])
. Read more about
roles.
Configure the replica Redis Cache nodes
-
SSH in to the replica Redis server.
-
Download and install the Omnibus GitLab package of your choice. Be sure to both follow only installation steps 1 and 2 on the page, and to select the correct Omnibus GitLab package, with the same version and type (Community or Enterprise editions) as your current install.
-
Edit
/etc/gitlab/gitlab.rb
and add the contents:# Specify server role as 'redis_replica_role' and enable Consul agent roles(['redis_replica_role', 'consul_role']) # IP address pointing to a local IP that the other machines can reach to. # You can also set bind to '0.0.0.0' which listen in all interfaces. # If you really need to bind to an external accessible IP, make # sure you add extra firewall rules to prevent unauthorized access. redis['bind'] = '10.6.0.52' # Define a port so Redis can listen for TCP requests which will allow other # machines to connect to it. redis['port'] = 6379 # The same password for Redis authentication you set up for the primary node. redis['password'] = 'REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER' # The IP of the primary Redis node. redis['master_ip'] = '10.6.0.51' # Port of primary Redis server, uncomment to change to non default. Defaults # to `6379`. #redis['master_port'] = 6379 # Set the Redis Cache instance as an LRU # 90% of available RAM in MB redis['maxmemory'] = '13500mb' redis['maxmemory_policy'] = "allkeys-lru" redis['maxmemory_samples'] = 5 ## Enable service discovery for Prometheus consul['monitoring_service_discovery'] = true ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100' redis_exporter['listen_address'] = '0.0.0.0:9121' redis_exporter['flags'] = { 'redis.addr' => 'redis://10.6.0.52:6379', 'redis.password' => 'redis-password-goes-here', } # Prevent database migrations from running on upgrade automatically gitlab_rails['auto_migrate'] = false
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
Reconfigure Omnibus GitLab for the changes to take effect.
-
Go through the steps again for all the other replica nodes, and make sure to set up the IPs correctly.
You can specify multiple roles, like sentinel and Redis, as:
roles(['redis_sentinel_role', 'redis_master_role'])
. Read more about
roles.
These values don't have to be changed again in /etc/gitlab/gitlab.rb
after
a failover, as the nodes will be managed by the Sentinels, and even after a
gitlab-ctl reconfigure
, they will get their configuration restored by
the same Sentinels.
Advanced configuration options are supported and can be added if needed.
Configure the Sentinel Cache nodes
Now that the Redis servers are all set up, let's configure the Sentinel servers. The following IPs will be used as an example:
10.6.0.71
: Sentinel - Cache 110.6.0.72
: Sentinel - Cache 210.6.0.73
: Sentinel - Cache 3
NOTE:
If you're using an external Redis Sentinel instance, be sure to exclude the
requirepass
parameter from the Sentinel configuration. This parameter causes
clients to report NOAUTH Authentication required.
.
Redis Sentinel 3.2.x doesn't support password authentication.
To configure the Sentinel Cache server:
-
SSH in to the server that will host Consul/Sentinel.
-
Download and install the Omnibus GitLab package of your choice. Be sure to both follow only installation steps 1 and 2 on the page, and to select the correct Omnibus GitLab package, with the same version and type (Community or Enterprise editions) as your current install.
-
Edit
/etc/gitlab/gitlab.rb
and add the contents:roles(['redis_sentinel_role', 'consul_role']) ## Must be the same in every sentinel node redis['master_name'] = 'gitlab-redis-cache' ## The same password for Redis authentication you set up for the primary node. redis['master_password'] = 'REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER' ## The IP of the primary Redis node. redis['master_ip'] = '10.6.0.51' ## Define a port so Redis can listen for TCP requests which will allow other ## machines to connect to it. redis['port'] = 6379 ## Port of primary Redis server, uncomment to change to non default. Defaults ## to `6379`. #redis['master_port'] = 6379 ## Configure Sentinel's IP sentinel['bind'] = '10.6.0.71' ## Port that Sentinel listens on, uncomment to change to non default. Defaults ## to `26379`. #sentinel['port'] = 26379 ## Quorum must reflect the amount of voting sentinels it take to start a failover. ## Value must NOT be greater then the amount of sentinels. ## ## The quorum can be used to tune Sentinel in two ways: ## 1. If a the quorum is set to a value smaller than the majority of Sentinels ## we deploy, we are basically making Sentinel more sensible to primary failures, ## triggering a failover as soon as even just a minority of Sentinels is no longer ## able to talk with the primary. ## 1. If a quorum is set to a value greater than the majority of Sentinels, we are ## making Sentinel able to failover only when there are a very large number (larger ## than majority) of well connected Sentinels which agree about the primary being down.s sentinel['quorum'] = 2 ## Consider unresponsive server down after x amount of ms. #sentinel['down_after_milliseconds'] = 10000 ## Specifies the failover timeout in milliseconds. It is used in many ways: ## ## - The time needed to re-start a failover after a previous failover was ## already tried against the same primary by a given Sentinel, is two ## times the failover timeout. ## ## - The time needed for a replica replicating to a wrong primary according ## to a Sentinel current configuration, to be forced to replicate ## with the right primary, is exactly the failover timeout (counting since ## the moment a Sentinel detected the misconfiguration). ## ## - The time needed to cancel a failover that is already in progress but ## did not produced any configuration change (REPLICAOF NO ONE yet not ## acknowledged by the promoted replica). ## ## - The maximum time a failover in progress waits for all the replica to be ## reconfigured as replicas of the new primary. However even after this time ## the replicas will be reconfigured by the Sentinels anyway, but not with ## the exact parallel-syncs progression as specified. #sentinel['failover_timeout'] = 60000 ## Enable service discovery for Prometheus consul['monitoring_service_discovery'] = true ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100' redis_exporter['listen_address'] = '0.0.0.0:9121' # Prevent database migrations from running on upgrade automatically gitlab_rails['auto_migrate'] = false
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
Reconfigure Omnibus GitLab for the changes to take effect.
-
Go through the steps again for all the other Consul/Sentinel nodes, and make sure you set up the correct IPs.
Configure the Redis and Sentinel Queues cluster
This is the section where we install and set up the new Redis Queues instances.
Both the primary and replica Redis nodes need the same password defined in
redis['password']
. At any time during a failover, the Sentinels can reconfigure
a node and change its status from primary to replica (and vice versa).
Configure the primary Redis Queues node
-
SSH in to the Primary Redis server.
-
Download and install the Omnibus GitLab package of your choice. Be sure to both follow only installation steps 1 and 2 on the page, and to select the correct Omnibus GitLab package, with the same version and type (Community or Enterprise editions) as your current install.
-
Edit
/etc/gitlab/gitlab.rb
and add the contents:# Specify server role as 'redis_master_role' and enable Consul agent roles(['redis_master_role', 'consul_role']) # IP address pointing to a local IP that the other machines can reach to. # You can also set bind to '0.0.0.0' which listen in all interfaces. # If you really need to bind to an external accessible IP, make # sure you add extra firewall rules to prevent unauthorized access. redis['bind'] = '10.6.0.61' # Define a port so Redis can listen for TCP requests which will allow other # machines to connect to it. redis['port'] = 6379 # Set up password authentication for Redis (use the same password in all nodes). redis['password'] = 'REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER' ## Enable service discovery for Prometheus consul['monitoring_service_discovery'] = true ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100' redis_exporter['listen_address'] = '0.0.0.0:9121' # Prevent database migrations from running on upgrade automatically gitlab_rails['auto_migrate'] = false
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
Reconfigure Omnibus GitLab for the changes to take effect.
You can specify multiple roles, like sentinel and Redis, as:
roles ['redis_sentinel_role', 'redis_master_role']
. Read more about
roles.
Configure the replica Redis Queues nodes
-
SSH in to the replica Redis Queue server.
-
Download and install the Omnibus GitLab package of your choice. Be sure to both follow only installation steps 1 and 2 on the page, and to select the correct Omnibus GitLab package, with the same version and type (Community or Enterprise editions) as your current install.
-
Edit
/etc/gitlab/gitlab.rb
and add the contents:# Specify server role as 'redis_replica_role' and enable Consul agent roles(['redis_replica_role', 'consul_role']) # IP address pointing to a local IP that the other machines can reach to. # You can also set bind to '0.0.0.0' which listen in all interfaces. # If you really need to bind to an external accessible IP, make # sure you add extra firewall rules to prevent unauthorized access. redis['bind'] = '10.6.0.62' # Define a port so Redis can listen for TCP requests which will allow other # machines to connect to it. redis['port'] = 6379 # The same password for Redis authentication you set up for the primary node. redis['password'] = 'REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER' # The IP of the primary Redis node. redis['master_ip'] = '10.6.0.61' # Port of primary Redis server, uncomment to change to non default. Defaults # to `6379`. #redis['master_port'] = 6379 ## Enable service discovery for Prometheus consul['monitoring_service_discovery'] = true ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100' redis_exporter['listen_address'] = '0.0.0.0:9121' # Prevent database migrations from running on upgrade automatically gitlab_rails['auto_migrate'] = false
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
Reconfigure Omnibus GitLab for the changes to take effect.
-
Go through the steps again for all the other replica nodes, and make sure to set up the IPs correctly.
You can specify multiple roles, like sentinel and Redis, as:
roles(['redis_sentinel_role', 'redis_master_role'])
. Read more about
roles.
These values don't have to be changed again in /etc/gitlab/gitlab.rb
after
a failover, as the nodes will be managed by the Sentinels, and even after a
gitlab-ctl reconfigure
, they will get their configuration restored by
the same Sentinels.
Advanced configuration options are supported and can be added if needed.
Configure the Sentinel Queues nodes
Now that the Redis servers are all set up, let's configure the Sentinel servers. The following IPs will be used as an example:
10.6.0.81
: Sentinel - Queues 110.6.0.82
: Sentinel - Queues 210.6.0.83
: Sentinel - Queues 3
NOTE:
If you're using an external Redis Sentinel instance, be sure to exclude the
requirepass
parameter from the Sentinel configuration. This parameter causes
clients to report NOAUTH Authentication required.
.
Redis Sentinel 3.2.x doesn't support password authentication.
To configure the Sentinel Queues server:
-
SSH in to the server that will host Sentinel.
-
Download and install the Omnibus GitLab package of your choice. Be sure to both follow only installation steps 1 and 2 on the page, and to select the correct Omnibus GitLab package, with the same version and type (Community or Enterprise editions) as your current install.
-
Edit
/etc/gitlab/gitlab.rb
and add the contents:roles(['redis_sentinel_role', 'consul_role']) ## Must be the same in every sentinel node redis['master_name'] = 'gitlab-redis-persistent' ## The same password for Redis authentication you set up for the primary node. redis['master_password'] = 'REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER' ## The IP of the primary Redis node. redis['master_ip'] = '10.6.0.61' ## Define a port so Redis can listen for TCP requests which will allow other ## machines to connect to it. redis['port'] = 6379 ## Port of primary Redis server, uncomment to change to non default. Defaults ## to `6379`. #redis['master_port'] = 6379 ## Configure Sentinel's IP sentinel['bind'] = '10.6.0.81' ## Port that Sentinel listens on, uncomment to change to non default. Defaults ## to `26379`. #sentinel['port'] = 26379 ## Quorum must reflect the amount of voting sentinels it take to start a failover. ## Value must NOT be greater then the amount of sentinels. ## ## The quorum can be used to tune Sentinel in two ways: ## 1. If a the quorum is set to a value smaller than the majority of Sentinels ## we deploy, we are basically making Sentinel more sensible to primary failures, ## triggering a failover as soon as even just a minority of Sentinels is no longer ## able to talk with the primary. ## 1. If a quorum is set to a value greater than the majority of Sentinels, we are ## making Sentinel able to failover only when there are a very large number (larger ## than majority) of well connected Sentinels which agree about the primary being down.s sentinel['quorum'] = 2 ## Consider unresponsive server down after x amount of ms. #sentinel['down_after_milliseconds'] = 10000 ## Specifies the failover timeout in milliseconds. It is used in many ways: ## ## - The time needed to re-start a failover after a previous failover was ## already tried against the same primary by a given Sentinel, is two ## times the failover timeout. ## ## - The time needed for a replica replicating to a wrong primary according ## to a Sentinel current configuration, to be forced to replicate ## with the right primary, is exactly the failover timeout (counting since ## the moment a Sentinel detected the misconfiguration). ## ## - The time needed to cancel a failover that is already in progress but ## did not produced any configuration change (REPLICAOF NO ONE yet not ## acknowledged by the promoted replica). ## ## - The maximum time a failover in progress waits for all the replica to be ## reconfigured as replicas of the new primary. However even after this time ## the replicas will be reconfigured by the Sentinels anyway, but not with ## the exact parallel-syncs progression as specified. #sentinel['failover_timeout'] = 60000 ## Enable service discovery for Prometheus consul['monitoring_service_discovery'] = true ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100' redis_exporter['listen_address'] = '0.0.0.0:9121' # Prevent database migrations from running on upgrade automatically gitlab_rails['auto_migrate'] = false
-
To ensure database migrations are only run during reconfigure and not automatically on upgrade, run:
sudo touch /etc/gitlab/skip-auto-reconfigure
Only the primary GitLab application server should handle migrations.
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
Reconfigure Omnibus GitLab for the changes to take effect.
-
Go through the steps again for all the other Sentinel nodes, and make sure you set up the correct IPs.
Configure Gitaly Cluster
Gitaly Cluster is a GitLab provided and recommended fault tolerant solution for storing Git repositories. In this configuration, every Git repository is stored on every Gitaly node in the cluster, with one being designated the primary, and failover occurs automatically if the primary node goes down.
The recommended cluster setup includes the following components:
- 3 Gitaly nodes: Replicated storage of Git repositories.
- 3 Praefect nodes: Router and transaction manager for Gitaly Cluster.
- 1 Praefect PostgreSQL node: Database server for Praefect. A third-party solution is required for Praefect database connections to be made highly available.
- 1 load balancer: A load balancer is required for Praefect. The internal load balancer will be used.
This section will detail how to configure the recommended standard setup in order. For more advanced setups refer to the standalone Gitaly Cluster documentation.
Configure Praefect PostgreSQL
Praefect, the routing and transaction manager for Gitaly Cluster, requires its own database server to store data on Gitaly Cluster status.
If you want to have a highly available setup, Praefect requires a third-party PostgreSQL database. A built-in solution is being worked on.
Praefect non-HA PostgreSQL standalone using Omnibus GitLab
The following IPs will be used as an example:
10.6.0.141
: Praefect PostgreSQL
First, make sure to install
the Linux GitLab package in the Praefect PostgreSQL node. Following the steps,
install the necessary dependencies from step 1, and add the
GitLab package repository from step 2. When installing GitLab
in the second step, do not supply the EXTERNAL_URL
value.
-
SSH in to the Praefect PostgreSQL node.
-
Create a strong password to be used for the Praefect PostgreSQL user. Take note of this password as
<praefect_postgresql_password>
. -
Generate the password hash for the Praefect PostgreSQL username/password pair. This assumes you will use the default username of
praefect
(recommended). The command will request the password<praefect_postgresql_password>
and confirmation. Use the value that is output by this command in the next step as the value of<praefect_postgresql_password_hash>
:sudo gitlab-ctl pg-password-md5 praefect
-
Edit
/etc/gitlab/gitlab.rb
replacing values noted in the# START user configuration
section:# Disable all components except PostgreSQL and Consul roles(['postgres_role', 'consul_role']) # PostgreSQL configuration postgresql['listen_address'] = '0.0.0.0' postgresql['max_connections'] = 200 # Prevent database migrations from running on upgrade automatically gitlab_rails['auto_migrate'] = false # Configure the Consul agent ## Enable service discovery for Prometheus consul['monitoring_service_discovery'] = true # START user configuration # Please set the real values as explained in Required Information section # # Replace PRAEFECT_POSTGRESQL_PASSWORD_HASH with a generated md5 value postgresql['sql_user_password'] = "<praefect_postgresql_password_hash>" # Replace XXX.XXX.XXX.XXX/YY with Network Address postgresql['trust_auth_cidr_addresses'] = %w(10.6.0.0/24 127.0.0.1/32) # Set the network addresses that the exporters will listen on for monitoring node_exporter['listen_address'] = '0.0.0.0:9100' postgres_exporter['listen_address'] = '0.0.0.0:9187' ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # # END user configuration
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
Reconfigure GitLab for the changes to take effect.
-
Follow the post configuration.
Praefect HA PostgreSQL third-party solution
As noted, a third-party PostgreSQL solution for Praefect's database is recommended if aiming for full High Availability.
There are many third-party solutions for PostgreSQL HA. The solution selected must have the following to work with Praefect:
- A static IP for all connections that doesn't change on failover.
LISTEN
SQL functionality must be supported.
Examples of the above could include Google's Cloud SQL or Amazon RDS.
Once the database is set up, follow the post configuration.
Praefect PostgreSQL post-configuration
After the Praefect PostgreSQL server has been set up, you'll then need to configure the user and database for Praefect to use.
We recommend the user be named praefect
and the database praefect_production
, and these can be configured as standard in PostgreSQL.
The password for the user is the same as the one you configured earlier as <praefect_postgresql_password>
.
This is how this would work with a Omnibus GitLab PostgreSQL setup:
-
SSH in to the Praefect PostgreSQL node.
-
Connect to the PostgreSQL server with administrative access. The
gitlab-psql
user should be used here for this as it's added by default in Omnibus. The databasetemplate1
is used because it is created by default on all PostgreSQL servers./opt/gitlab/embedded/bin/psql -U gitlab-psql -d template1 -h POSTGRESQL_SERVER_ADDRESS
-
Create the new user
praefect
, replacing<praefect_postgresql_password>
:CREATE ROLE praefect WITH LOGIN CREATEDB PASSWORD <praefect_postgresql_password>;
-
Reconnect to the PostgreSQL server, this time as the
praefect
user:/opt/gitlab/embedded/bin/psql -U praefect -d template1 -h POSTGRESQL_SERVER_ADDRESS
-
Create a new database
praefect_production
:CREATE DATABASE praefect_production WITH ENCODING=UTF8;
Configure Praefect
Praefect is the router and transaction manager for Gitaly Cluster and all connections to Gitaly go through it. This section details how to configure it.
Praefect requires several secret tokens to secure communications across the Cluster:
<praefect_external_token>
: Used for repositories hosted on your Gitaly cluster and can only be accessed by Gitaly clients that carry this token.<praefect_internal_token>
: Used for replication traffic inside your Gitaly cluster. This is distinct frompraefect_external_token
because Gitaly clients must not be able to access internal nodes of the Praefect cluster directly; that could lead to data loss.<praefect_postgresql_password>
: The Praefect PostgreSQL password defined in the previous section is also required as part of this setup.
Gitaly Cluster nodes are configured in Praefect via a virtual storage
. Each storage contains
the details of each Gitaly node that makes up the cluster. Each storage is also given a name
and this name is used in several areas of the configuration. In this guide, the name of the storage will be
default
. Also, this guide is geared towards new installs, if upgrading an existing environment
to use Gitaly Cluster, you may need to use a different name.
Refer to the Praefect documentation for more info.
The following IPs will be used as an example:
10.6.0.131
: Praefect 110.6.0.132
: Praefect 210.6.0.133
: Praefect 3
To configure the Praefect nodes, on each one:
-
SSH in to the Praefect server.
-
Download and install the Omnibus GitLab package of your choice. Be sure to follow only installation steps 1 and 2 on the page.
-
Edit the
/etc/gitlab/gitlab.rb
file to configure Praefect:# Avoid running unnecessary services on the Praefect server gitaly['enable'] = false postgresql['enable'] = false redis['enable'] = false puma['enable'] = false sidekiq['enable'] = false gitlab_workhorse['enable'] = false prometheus['enable'] = false alertmanager['enable'] = false grafana['enable'] = false gitlab_exporter['enable'] = false nginx['enable'] = false # Praefect Configuration praefect['enable'] = true praefect['listen_addr'] = '0.0.0.0:2305' # Prevent database migrations from running on upgrade automatically praefect['auto_migrate'] = false gitlab_rails['auto_migrate'] = false # Configure the Consul agent consul['enable'] = true ## Enable service discovery for Prometheus consul['monitoring_service_discovery'] = true # START user configuration # Please set the real values as explained in Required Information section # # Praefect External Token # This is needed by clients outside the cluster (like GitLab Shell) to communicate with the Praefect cluster praefect['auth_token'] = '<praefect_external_token>' # Praefect Database Settings praefect['database_host'] = '10.6.0.141' praefect['database_port'] = 5432 # `no_proxy` settings must always be a direct connection for caching praefect['database_host_no_proxy'] = '10.6.0.141' praefect['database_port_no_proxy'] = 5432 praefect['database_dbname'] = 'praefect_production' praefect['database_user'] = 'praefect' praefect['database_password'] = '<praefect_postgresql_password>' # Praefect Virtual Storage config # Name of storage hash must match storage name in git_data_dirs on GitLab # server ('praefect') and in git_data_dirs on Gitaly nodes ('gitaly-1') praefect['virtual_storages'] = { 'default' => { 'nodes' => { 'gitaly-1' => { 'address' => 'tcp://10.6.0.91:8075', 'token' => '<praefect_internal_token>' }, 'gitaly-2' => { 'address' => 'tcp://10.6.0.92:8075', 'token' => '<praefect_internal_token>' }, 'gitaly-3' => { 'address' => 'tcp://10.6.0.93:8075', 'token' => '<praefect_internal_token>' }, } } } # Set the network addresses that the exporters will listen on for monitoring node_exporter['listen_address'] = '0.0.0.0:9100' praefect['prometheus_listen_addr'] = '0.0.0.0:9652' ## The IPs of the Consul server nodes ## You can also use FQDNs and intermix them with IPs consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13), } # # END user configuration
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
Praefect requires to run some database migrations, much like the main GitLab application. For this you should select one Praefect node only to run the migrations, AKA the Deploy Node. This node must be configured first before the others as follows:
-
In the
/etc/gitlab/gitlab.rb
file, change thepraefect['auto_migrate']
setting value fromfalse
totrue
-
To ensure database migrations are only run during reconfigure and not automatically on upgrade, run:
sudo touch /etc/gitlab/skip-auto-reconfigure
- Reconfigure GitLab for the changes to take effect and to run the Praefect database migrations.
-
-
On all other Praefect nodes, Reconfigure GitLab for the changes to take effect.
Configure Gitaly
The Gitaly server nodes that make up the cluster have requirements that are dependent on data, specifically the number of projects and those projects' sizes. It's recommended that a Gitaly Cluster stores no more than 5 TB of data on each node. Depending on your repository storage requirements, you may require additional Gitaly Clusters.
Due to Gitaly having notable input and output requirements, we strongly recommend that all Gitaly nodes use solid-state drives (SSDs). These SSDs should have a throughput of at least 8,000 input/output operations per second (IOPS) for read operations and 2,000 IOPS for write operations. These IOPS values are initial recommendations, and may be adjusted to greater or lesser values depending on the scale of your environment's workload. If you're running the environment on a Cloud provider, refer to their documentation about how to configure IOPS correctly.
Gitaly servers must not be exposed to the public internet, as Gitaly's network traffic is unencrypted by default. The use of a firewall is highly recommended to restrict access to the Gitaly server. Another option is to use TLS.
For configuring Gitaly you should note the following:
git_data_dirs
should be configured to reflect the storage path for the specific Gitaly nodeauth_token
should be the same aspraefect_internal_token
The following IPs will be used as an example:
10.6.0.91
: Gitaly 110.6.0.92
: Gitaly 210.6.0.93
: Gitaly 3
On each node:
-
Download and install the Omnibus GitLab package of your choice. Be sure to follow only installation steps 1 and 2 on the page, and do not provide the
EXTERNAL_URL
value. -
Edit the Gitaly server node's
/etc/gitlab/gitlab.rb
file to configure storage paths, enable the network listener, and to configure the token:# Avoid running unnecessary services on the Gitaly server postgresql['enable'] = false redis['enable'] = false puma['enable'] = false sidekiq['enable'] = false gitlab_workhorse['enable'] = false prometheus['enable'] = false alertmanager['enable'] = false grafana['enable'] = false gitlab_exporter['enable'] = false nginx['enable'] = false # Prevent database migrations from running on upgrade automatically gitlab_rails['auto_migrate'] = false # Configure the gitlab-shell API callback URL. Without this, `git push` will # fail. This can be your 'front door' GitLab URL or an internal load # balancer. gitlab_rails['internal_api_url'] = 'https://gitlab.example.com' # Gitaly gitaly['enable'] = true # Make Gitaly accept connections on all network interfaces. You must use # firewalls to restrict access to this address/port. # Comment out following line if you only want to support TLS connections gitaly['listen_addr'] = "0.0.0.0:8075" # Gitaly Auth Token # Should be the same as praefect_internal_token gitaly['auth_token'] = '<praefect_internal_token>'
-
Append the following to
/etc/gitlab/gitlab.rb
for each respective server:-
On Gitaly node 1:
git_data_dirs({ "gitaly-1" => { "path" => "/var/opt/gitlab/git-data" } })
-
On Gitaly node 2:
git_data_dirs({ "gitaly-2" => { "path" => "/var/opt/gitlab/git-data" } })
-
On Gitaly node 3:
git_data_dirs({ "gitaly-3" => { "path" => "/var/opt/gitlab/git-data" } })
-
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
Save the file, and then reconfigure GitLab.
Gitaly Cluster TLS support
Praefect supports TLS encryption. To communicate with a Praefect instance that listens for secure connections, you must:
- Use a
tls://
URL scheme in thegitaly_address
of the corresponding storage entry in the GitLab configuration. - Bring your own certificates because this isn't provided automatically. The certificate corresponding to each Praefect server must be installed on that Praefect server.
Additionally the certificate, or its certificate authority, must be installed on all Gitaly servers and on all Praefect clients that communicate with it following the procedure described in GitLab custom certificate configuration (and repeated below).
Note the following:
-
The certificate must specify the address you use to access the Praefect server. If addressing the Praefect server by:
- Hostname, you can either use the Common Name field for this, or add it as a Subject Alternative Name.
- IP address, you must add it as a Subject Alternative Name to the certificate.
-
You can configure Praefect servers with both an unencrypted listening address
listen_addr
and an encrypted listening addresstls_listen_addr
at the same time. This allows you to do a gradual transition from unencrypted to encrypted traffic, if necessary. -
The Internal Load Balancer will also access to the certificates and need to be configured to allow for TLS passthrough. Refer to the load balancers documentation on how to configure this.
To configure Praefect with TLS:
-
Create certificates for Praefect servers.
-
On the Praefect servers, create the
/etc/gitlab/ssl
directory and copy your key and certificate there:sudo mkdir -p /etc/gitlab/ssl sudo chmod 755 /etc/gitlab/ssl sudo cp key.pem cert.pem /etc/gitlab/ssl/ sudo chmod 644 key.pem cert.pem
-
Edit
/etc/gitlab/gitlab.rb
and add:praefect['tls_listen_addr'] = "0.0.0.0:3305" praefect['certificate_path'] = "/etc/gitlab/ssl/cert.pem" praefect['key_path'] = "/etc/gitlab/ssl/key.pem"
-
Save the file and reconfigure.
-
On the Praefect clients (including each Gitaly server), copy the certificates, or their certificate authority, into
/etc/gitlab/trusted-certs
:sudo cp cert.pem /etc/gitlab/trusted-certs/
-
On the Praefect clients (except Gitaly servers), edit
git_data_dirs
in/etc/gitlab/gitlab.rb
as follows:git_data_dirs({ "default" => { "gitaly_address" => 'tls://LOAD_BALANCER_SERVER_ADDRESS:2305', "gitaly_token" => 'PRAEFECT_EXTERNAL_TOKEN' } })
-
Save the file and reconfigure GitLab.
Configure Sidekiq
Sidekiq requires connection to the Redis, PostgreSQL and Gitaly instances. Object storage is also required to be configured.
10.6.0.101
: Sidekiq 110.6.0.102
: Sidekiq 210.6.0.103
: Sidekiq 310.6.0.104
: Sidekiq 4
To configure the Sidekiq nodes, on each one:
-
SSH in to the Sidekiq server.
-
Download and install the Omnibus GitLab package of your choice. Be sure to follow only installation steps 1 and 2 on the page.
-
Open
/etc/gitlab/gitlab.rb
with your editor:# Avoid running unnecessary services on the Sidekiq server gitaly['enable'] = false postgresql['enable'] = false redis['enable'] = false puma['enable'] = false gitlab_workhorse['enable'] = false prometheus['enable'] = false alertmanager['enable'] = false grafana['enable'] = false gitlab_exporter['enable'] = false nginx['enable'] = false # Redis ## Redis connection details ## First cluster that will host the cache gitlab_rails['redis_cache_instance'] = 'redis://:<REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER>@gitlab-redis-cache' gitlab_rails['redis_cache_sentinels'] = [ {host: '10.6.0.71', port: 26379}, {host: '10.6.0.72', port: 26379}, {host: '10.6.0.73', port: 26379}, ] ## Second cluster that will host the queues, shared state, and actioncable gitlab_rails['redis_queues_instance'] = 'redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent' gitlab_rails['redis_shared_state_instance'] = 'redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent' gitlab_rails['redis_actioncable_instance'] = 'redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent' gitlab_rails['redis_queues_sentinels'] = [ {host: '10.6.0.81', port: 26379}, {host: '10.6.0.82', port: 26379}, {host: '10.6.0.83', port: 26379}, ] gitlab_rails['redis_shared_state_sentinels'] = [ {host: '10.6.0.81', port: 26379}, {host: '10.6.0.82', port: 26379}, {host: '10.6.0.83', port: 26379}, ] gitlab_rails['redis_actioncable_sentinels'] = [ {host: '10.6.0.81', port: 26379}, {host: '10.6.0.82', port: 26379}, {host: '10.6.0.83', port: 26379}, ] # Gitaly # git_data_dirs get configured for the Praefect virtual storage # Address is Internal Load Balancer for Praefect # Token is praefect_external_token git_data_dirs({ "default" => { "gitaly_address" => "tcp://10.6.0.40:2305", # internal load balancer IP "gitaly_token" => '<praefect_external_token>' } }) # PostgreSQL gitlab_rails['db_host'] = '10.6.0.20' # internal load balancer IP gitlab_rails['db_port'] = 6432 gitlab_rails['db_password'] = '<postgresql_user_password>' gitlab_rails['db_adapter'] = 'postgresql' gitlab_rails['db_encoding'] = 'unicode' ## Prevent database migrations from running on upgrade automatically gitlab_rails['auto_migrate'] = false # Sidekiq sidekiq['enable'] = true sidekiq['listen_address'] = "0.0.0.0" ## Set number of Sidekiq queue processes to the same number as available CPUs sidekiq['queue_groups'] = ['*'] * 4 ## Set number of Sidekiq threads per queue process to the recommend number of 10 sidekiq['max_concurrency'] = 10 # Monitoring consul['enable'] = true consul['monitoring_service_discovery'] = true consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13) } # Set the network addresses that the exporters will listen on node_exporter['listen_address'] = '0.0.0.0:9100' ## Add the monitoring node's IP address to the monitoring whitelist gitlab_rails['monitoring_whitelist'] = ['10.6.0.151/32', '127.0.0.0/8'] # Object storage ## This is an example for configuring Object Storage on GCP ## Replace this config with your chosen Object Storage provider as desired gitlab_rails['object_store']['connection'] = { 'provider' => 'Google', 'google_project' => '<gcp-project-name>', 'google_json_key_location' => '<path-to-gcp-service-account-key>' } gitlab_rails['object_store']['objects']['artifacts']['bucket'] = "<gcp-artifacts-bucket-name>" gitlab_rails['object_store']['objects']['external_diffs']['bucket'] = "<gcp-external-diffs-bucket-name>" gitlab_rails['object_store']['objects']['lfs']['bucket'] = "<gcp-lfs-bucket-name>" gitlab_rails['object_store']['objects']['uploads']['bucket'] = "<gcp-uploads-bucket-name>" gitlab_rails['object_store']['objects']['packages']['bucket'] = "<gcp-packages-bucket-name>" gitlab_rails['object_store']['objects']['dependency_proxy']['bucket'] = "<gcp-dependency-proxy-bucket-name>" gitlab_rails['object_store']['objects']['terraform_state']['bucket'] = "<gcp-terraform-state-bucket-name>" gitlab_rails['backup_upload_connection'] = { 'provider' => 'Google', 'google_project' => '<gcp-project-name>', 'google_json_key_location' => '<path-to-gcp-service-account-key>' } gitlab_rails['backup_upload_remote_directory'] = "<gcp-backups-state-bucket-name>"
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
To ensure database migrations are only run during reconfigure and not automatically on upgrade, run:
sudo touch /etc/gitlab/skip-auto-reconfigure
Only a single designated node should handle migrations as detailed in the GitLab Rails post-configuration section.
-
Reconfigure GitLab for the changes to take effect.
NOTE: If you find that the environment's Sidekiq job processing is slow with long queues, more nodes can be added as required. You can also tune your Sidekiq nodes to run multiple Sidekiq processes.
Configure GitLab Rails
This section describes how to configure the GitLab application (Rails) component. Object storage is also required to be configured.
The following IPs will be used as an example:
10.6.0.111
: GitLab application 110.6.0.112
: GitLab application 210.6.0.113
: GitLab application 310.6.0.114
: GitLab application 410.6.0.115
: GitLab application 510.6.0.116
: GitLab application 610.6.0.117
: GitLab application 710.6.0.118
: GitLab application 810.6.0.119
: GitLab application 910.6.0.120
: GitLab application 1010.6.0.121
: GitLab application 1110.6.0.122
: GitLab application 12
On each node perform the following:
-
Download and install the Omnibus GitLab package of your choice. Be sure to follow only installation steps 1 and 2 on the page.
-
Edit
/etc/gitlab/gitlab.rb
and use the following configuration. To maintain uniformity of links across nodes, theexternal_url
on the application server should point to the external URL that users will use to access GitLab. This would be the URL of the external load balancer which will route traffic to the GitLab application server:external_url 'https://gitlab.example.com' # git_data_dirs get configured for the Praefect virtual storage # Address is Interal Load Balancer for Praefect # Token is praefect_external_token git_data_dirs({ "default" => { "gitaly_address" => "tcp://10.6.0.40:2305", # internal load balancer IP "gitaly_token" => '<praefect_external_token>' } }) ## Disable components that will not be on the GitLab application server roles(['application_role']) gitaly['enable'] = false nginx['enable'] = true sidekiq['enable'] = false ## PostgreSQL connection details # Disable PostgreSQL on the application node postgresql['enable'] = false gitlab_rails['db_host'] = '10.6.0.20' # internal load balancer IP gitlab_rails['db_port'] = 6432 gitlab_rails['db_password'] = '<postgresql_user_password>' # Prevent database migrations from running on upgrade automatically gitlab_rails['auto_migrate'] = false ## Redis connection details ## First cluster that will host the cache gitlab_rails['redis_cache_instance'] = 'redis://:<REDIS_PRIMARY_PASSWORD_OF_FIRST_CLUSTER>@gitlab-redis-cache' gitlab_rails['redis_cache_sentinels'] = [ {host: '10.6.0.71', port: 26379}, {host: '10.6.0.72', port: 26379}, {host: '10.6.0.73', port: 26379}, ] ## Second cluster that will host the queues, shared state, and actionable gitlab_rails['redis_queues_instance'] = 'redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent' gitlab_rails['redis_shared_state_instance'] = 'redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent' gitlab_rails['redis_actioncable_instance'] = 'redis://:<REDIS_PRIMARY_PASSWORD_OF_SECOND_CLUSTER>@gitlab-redis-persistent' gitlab_rails['redis_queues_sentinels'] = [ {host: '10.6.0.81', port: 26379}, {host: '10.6.0.82', port: 26379}, {host: '10.6.0.83', port: 26379}, ] gitlab_rails['redis_shared_state_sentinels'] = [ {host: '10.6.0.81', port: 26379}, {host: '10.6.0.82', port: 26379}, {host: '10.6.0.83', port: 26379}, ] gitlab_rails['redis_actioncable_sentinels'] = [ {host: '10.6.0.81', port: 26379}, {host: '10.6.0.82', port: 26379}, {host: '10.6.0.83', port: 26379}, ] # Set the network addresses that the exporters used for monitoring will listen on node_exporter['listen_address'] = '0.0.0.0:9100' gitlab_workhorse['prometheus_listen_addr'] = '0.0.0.0:9229' puma['listen'] = '0.0.0.0' # Add the monitoring node's IP address to the monitoring whitelist and allow it to # scrape the NGINX metrics gitlab_rails['monitoring_whitelist'] = ['10.6.0.151/32', '127.0.0.0/8'] nginx['status']['options']['allow'] = ['10.6.0.151/32', '127.0.0.0/8'] ############################# ### Object storage ### ############################# # This is an example for configuring Object Storage on GCP # Replace this config with your chosen Object Storage provider as desired gitlab_rails['object_store']['connection'] = { 'provider' => 'Google', 'google_project' => '<gcp-project-name>', 'google_json_key_location' => '<path-to-gcp-service-account-key>' } gitlab_rails['object_store']['objects']['artifacts']['bucket'] = "<gcp-artifacts-bucket-name>" gitlab_rails['object_store']['objects']['external_diffs']['bucket'] = "<gcp-external-diffs-bucket-name>" gitlab_rails['object_store']['objects']['lfs']['bucket'] = "<gcp-lfs-bucket-name>" gitlab_rails['object_store']['objects']['uploads']['bucket'] = "<gcp-uploads-bucket-name>" gitlab_rails['object_store']['objects']['packages']['bucket'] = "<gcp-packages-bucket-name>" gitlab_rails['object_store']['objects']['dependency_proxy']['bucket'] = "<gcp-dependency-proxy-bucket-name>" gitlab_rails['object_store']['objects']['terraform_state']['bucket'] = "<gcp-terraform-state-bucket-name>" gitlab_rails['backup_upload_connection'] = { 'provider' => 'Google', 'google_project' => '<gcp-project-name>', 'google_json_key_location' => '<path-to-gcp-service-account-key>' } gitlab_rails['backup_upload_remote_directory'] = "<gcp-backups-state-bucket-name>"
-
If you're using Gitaly with TLS support, make sure the
git_data_dirs
entry is configured withtls
instead oftcp
:git_data_dirs({ "default" => { "gitaly_address" => "tls://10.6.0.40:2305", # internal load balancer IP "gitaly_token" => '<praefect_external_token>' } })
-
Copy the cert into
/etc/gitlab/trusted-certs
:sudo cp cert.pem /etc/gitlab/trusted-certs/
-
-
Copy the
/etc/gitlab/gitlab-secrets.json
file from the first Omnibus node you configured and add or replace the file of the same name on this server. If this is the first Omnibus node you are configuring then you can skip this step. -
To ensure database migrations are only run during reconfigure and not automatically on upgrade, run:
sudo touch /etc/gitlab/skip-auto-reconfigure
Only a single designated node should handle migrations as detailed in the GitLab Rails post-configuration section.
-
Reconfigure GitLab for the changes to take effect.
-
If you're using NFS:
-
If necessary, install the NFS client utility packages using the following commands:
# Ubuntu/Debian apt-get install nfs-common # CentOS/Red Hat yum install nfs-utils nfs-utils-lib
-
Specify the necessary NFS mounts in
/etc/fstab
. The exact contents of/etc/fstab
will depend on how you chose to configure your NFS server. See the NFS documentation for examples and the various options. -
Create the shared directories. These may be different depending on your NFS mount locations.
mkdir -p /var/opt/gitlab/.ssh /var/opt/gitlab/gitlab-rails/uploads /var/opt/gitlab/gitlab-rails/shared /var/opt/gitlab/gitlab-ci/builds /var/opt/gitlab/git-data
-
Edit
/etc/gitlab/gitlab.rb
and use the following configuration:## Prevent GitLab from starting if NFS data mounts are not available high_availability['mountpoint'] = '/var/opt/gitlab/git-data' ## Ensure UIDs and GIDs match between servers for permissions via NFS user['uid'] = 9000 user['gid'] = 9000 web_server['uid'] = 9001 web_server['gid'] = 9001 registry['uid'] = 9002 registry['gid'] = 9002
-
Save the file and reconfigure GitLab.
-
-
Confirm the node can connect to Gitaly:
sudo gitlab-rake gitlab:gitaly:check
Then, tail the logs to see the requests:
sudo gitlab-ctl tail gitaly
-
Optionally, from the Gitaly servers, confirm that Gitaly can perform callbacks to the internal API:
sudo /opt/gitlab/embedded/bin/gitaly-hooks check /var/opt/gitlab/gitaly/config.toml
When you specify https
in the external_url
, as in the previous example,
GitLab expects that the SSL certificates are in /etc/gitlab/ssl/
. If the
certificates aren't present, NGINX will fail to start. For more information, see
the NGINX documentation.
GitLab Rails post-configuration
-
Designate one application node for running database migrations during installation and updates. Initialize the GitLab database and ensure all migrations ran:
sudo gitlab-rake gitlab:db:configure
If you encounter a
rake aborted!
error message stating that PgBouncer is failing to connect to PostgreSQL, it may be that your PgBouncer node's IP address is missing from PostgreSQL'strust_auth_cidr_addresses
ingitlab.rb
on your database nodes. Before proceeding, see PgBouncer errorERROR: pgbouncer cannot connect to server
. -
Configure fast lookup of authorized SSH keys in the database.
Configure Prometheus
The Omnibus GitLab package can be used to configure a standalone Monitoring node running Prometheus and Grafana.
The following IP will be used as an example:
10.6.0.151
: Prometheus
To configure the Monitoring node:
-
SSH in to the Monitoring node.
-
Download and install the Omnibus GitLab package of your choice. Be sure to follow only installation steps 1 and 2 on the page.
-
Edit
/etc/gitlab/gitlab.rb
and add the contents:roles(['monitoring_role', 'consul_role']) external_url 'http://gitlab.example.com' # Prometheus prometheus['listen_address'] = '0.0.0.0:9090' prometheus['monitor_kubernetes'] = false # Grafana grafana['admin_password'] = '<grafana_password>' grafana['disable_login_form'] = false # Enable service discovery for Prometheus consul['monitoring_service_discovery'] = true consul['configuration'] = { retry_join: %w(10.6.0.11 10.6.0.12 10.6.0.13) } # Nginx - For Grafana access nginx['enable'] = true
-
Save the file and reconfigure GitLab.
-
In the GitLab UI, set
admin/application_settings/metrics_and_profiling
> Metrics - Grafana to/-/grafana
tohttp[s]://<MONITOR NODE>/-/grafana
Configure the object storage
GitLab supports using an object storage service for holding numerous types of data. It's recommended over NFS and in general it's better in larger setups as object storage is typically much more performant, reliable, and scalable.
GitLab has been tested on a number of object storage providers:
- Amazon S3
- Google Cloud Storage
- Digital Ocean Spaces
- Oracle Cloud Infrastructure
- OpenStack Swift
- Azure Blob storage
- On-premises hardware and appliances from various storage vendors.
- MinIO. We have a guide to deploying this within our Helm Chart documentation.
There are two ways of specifying object storage configuration in GitLab:
- Consolidated form: A single credential is shared by all supported object types.
- Storage-specific form: Every object defines its own object storage connection and configuration.
Starting with GitLab 13.2, consolidated object storage configuration is available. It simplifies your GitLab configuration since the connection details are shared across object types. Refer to Consolidated object storage configuration guide for instructions on how to set it up.
For configuring object storage in GitLab 13.1 and earlier, or for storage types not supported by consolidated configuration form, refer to the following guides based on what features you intend to use:
Object storage type | Supported by consolidated configuration? |
---|---|
Backups | No |
Job artifacts including archived job logs | Yes |
LFS objects | Yes |
Uploads | Yes |
Container Registry (optional feature) | No |
Merge request diffs | Yes |
Mattermost | No |
Packages (optional feature) | Yes |
Dependency Proxy (optional feature) | Yes |
Pseudonymizer (optional feature) (ULTIMATE SELF) | No |
Autoscale runner caching (optional for improved performance) | No |
Terraform state files | Yes |
Using separate buckets for each data type is the recommended approach for GitLab. This ensures there are no collisions across the various types of data GitLab stores. There are plans to enable the use of a single bucket in the future.
Configure Advanced Search
You can leverage Elasticsearch and enable Advanced Search for faster, more advanced code search across your entire GitLab instance.
Elasticsearch cluster design and requirements are dependent on your specific data. For recommended best practices about how to set up your Elasticsearch cluster alongside your instance, read how to choose the optimal cluster configuration.
Configure NFS (optional)
Object storage, along with Gitaly are recommended over NFS wherever possible for improved performance. If you intend to use GitLab Pages, this currently requires NFS.
See how to configure NFS.
WARNING: Engineering support for NFS for Git repositories is deprecated. Technical support is planned to be unavailable from GitLab 15.0. No further enhancements are planned for this feature.
Read:
- The Gitaly and NFS deprecation notice.
- About the correct mount options to use.
Cloud Native Hybrid reference architecture with Helm Charts (alternative)
As an alternative approach, you can also run select components of GitLab as Cloud Native in Kubernetes via our official Helm Charts. In this setup, we support running the equivalent of GitLab Rails and Sidekiq nodes in a Kubernetes cluster, named Webservice and Sidekiq respectively. In addition, the following other supporting services are supported: NGINX, Task Runner, Migrations, Prometheus, and Grafana.
Hybrid installations leverage the benefits of both cloud native and traditional compute deployments. With this, stateless components can benefit from cloud native workload management benefits while stateful components are deployed in compute VMs with Omnibus to benefit from increased permanence.
NOTE: This is an advanced setup. Running services in Kubernetes is well known to be complex. This setup is only recommended if you have strong working knowledge and experience in Kubernetes. The rest of this section assumes this.
Cluster topology
The following tables and diagram detail the hybrid environment using the same formats as the normal environment above.
First are the components that run in Kubernetes. The recommendation at this time is to use Google Cloud’s Kubernetes Engine (GKE) and associated machine types, but the memory and CPU requirements should translate to most other providers. We hope to update this in the future with further specific cloud provider details.
Service | Nodes1 | Configuration | GCP | Allocatable CPUs and Memory |
---|---|---|---|---|
Webservice | 16 | 32 vCPU, 28.8 GB memory | n1-highcpu-32 |
510 vCPU, 472 GB memory |
Sidekiq | 4 | 4 vCPU, 15 GB memory | n1-standard-4 |
15.5 vCPU, 50 GB memory |
Supporting services such as NGINX, Prometheus | 2 | 4 vCPU, 15 GB memory | n1-standard-4 |
7.75 vCPU, 25 GB memory |
- Nodes configuration is shown as it is forced to ensure pod vcpu / memory ratios and avoid scaling during performance testing. In production deployments there is no need to assign pods to nodes. A minimum of three nodes in three different availability zones is strongly recommended to align with resilient cloud architecture practices.
Next are the backend components that run on static compute VMs via Omnibus (or External PaaS services where applicable):
Service | Nodes | Configuration | GCP |
---|---|---|---|
Consul1 | 3 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 |
PostgreSQL1 | 3 | 32 vCPU, 120 GB memory | n1-standard-32 |
PgBouncer1 | 3 | 2 vCPU, 1.8 GB memory | n1-highcpu-2 |
Internal load balancing node3 | 1 | 8 vCPU, 7.2 GB memory | n1-highcpu-8 |
Redis - Cache2 | 3 | 4 vCPU, 15 GB memory | n1-standard-4 |
Redis - Queues / Shared State2 | 3 | 4 vCPU, 15 GB memory | n1-standard-4 |
Redis Sentinel - Cache2 | 3 | 1 vCPU, 3.75 GB memory | n1-standard-1 |
Redis Sentinel - Queues / Shared State2 | 3 | 1 vCPU, 3.75 GB memory | n1-standard-1 |
Gitaly | 3 | 64 vCPU, 240 GB memory | n1-standard-64 |
Praefect | 3 | 4 vCPU, 3.6 GB memory | n1-highcpu-4 |
Praefect PostgreSQL1 | 1+ | 2 vCPU, 1.8 GB memory | n1-highcpu-2 |
Object storage4 | n/a | n/a | n/a |
- Can be optionally run on reputable third-party external PaaS PostgreSQL solutions. Google Cloud SQL and AWS RDS are known to work, however Azure Database for PostgreSQL is not recommended due to performance issues. Consul is primarily used for PostgreSQL high availability so can be ignored when using a PostgreSQL PaaS setup. However it is also used optionally by Prometheus for Omnibus auto host discovery.
- Can be optionally run on reputable third-party external PaaS Redis solutions. Google Memorystore and AWS Elasticache are known to work.
- Can be optionally run on reputable third-party load balancing services (LB PaaS). AWS ELB is known to work.
- Should be run on reputable third-party object storage (storage PaaS) for cloud implementations. Google Cloud Storage and AWS S3 are known to work.
NOTE: For all PaaS solutions that involve configuring instances, it is strongly recommended to implement a minimum of three nodes in three different availability zones to align with resilient cloud architecture practices.
@startuml 50k
card "Kubernetes via Helm Charts" as kubernetes {
card "**External Load Balancer**" as elb #6a9be7
together {
collections "**Webservice** x16" as gitlab #32CD32
collections "**Sidekiq** x4" as sidekiq #ff8dd1
}
card "**Prometheus + Grafana**" as monitor #7FFFD4
card "**Supporting Services**" as support
}
card "**Internal Load Balancer**" as ilb #9370DB
collections "**Consul** x3" as consul #e76a9b
card "Gitaly Cluster" as gitaly_cluster {
collections "**Praefect** x3" as praefect #FF8C00
collections "**Gitaly** x3" as gitaly #FF8C00
card "**Praefect PostgreSQL***\n//Non fault-tolerant//" as praefect_postgres #FF8C00
praefect -[#FF8C00]-> gitaly
praefect -[#FF8C00]> praefect_postgres
}
card "Database" as database {
collections "**PGBouncer** x3" as pgbouncer #4EA7FF
card "**PostgreSQL** (Primary)" as postgres_primary #4EA7FF
collections "**PostgreSQL** (Secondary) x2" as postgres_secondary #4EA7FF
pgbouncer -[#4EA7FF]-> postgres_primary
postgres_primary .[#4EA7FF]> postgres_secondary
}
card "redis" as redis {
collections "**Redis Persistent** x3" as redis_persistent #FF6347
collections "**Redis Cache** x3" as redis_cache #FF6347
collections "**Redis Persistent Sentinel** x3" as redis_persistent_sentinel #FF6347
collections "**Redis Cache Sentinel** x3"as redis_cache_sentinel #FF6347
redis_persistent <.[#FF6347]- redis_persistent_sentinel
redis_cache <.[#FF6347]- redis_cache_sentinel
}
cloud "**Object Storage**" as object_storage #white
elb -[#6a9be7]-> gitlab
elb -[#6a9be7]-> monitor
elb -[hidden]-> support
gitlab -[#32CD32]--> ilb
gitlab -[#32CD32]-> object_storage
gitlab -[#32CD32]---> redis
gitlab -[hidden]--> consul
sidekiq -[#ff8dd1]--> ilb
sidekiq -[#ff8dd1]-> object_storage
sidekiq -[#ff8dd1]---> redis
sidekiq -[hidden]--> consul
ilb -[#9370DB]-> gitaly_cluster
ilb -[#9370DB]-> database
consul .[#e76a9b]-> database
consul .[#e76a9b]-> gitaly_cluster
consul .[#e76a9b,norank]--> redis
monitor .[#7FFFD4]> consul
monitor .[#7FFFD4]-> database
monitor .[#7FFFD4]-> gitaly_cluster
monitor .[#7FFFD4,norank]--> redis
monitor .[#7FFFD4]> ilb
monitor .[#7FFFD4,norank]u--> elb
@enduml
Resource usage settings
The following formulas help when calculating how many pods may be deployed within resource constraints. The 50k reference architecture example values file documents how to apply the calculated configuration to the Helm Chart.
Webservice
Webservice pods typically need about 1 vCPU and 1.25 GB of memory per worker. Each Webservice pod consumes roughly 4 vCPUs and 5 GB of memory using the recommended topology because four worker processes are created by default and each pod has other small processes running.
For 50,000 users we recommend a total Puma worker count of around 320. With the provided recommendations this allows the deployment of up to 80 Webservice pods with 4 workers per pod and 5 pods per node. Expand available resources using the ratio of 1 vCPU to 1.25 GB of memory per each worker process for each additional Webservice pod.
For further information on resource usage, see the Webservice resources.
Sidekiq
Sidekiq pods should generally have 1 vCPU and 2 GB of memory.
The provided starting point allows the deployment of up to 14 Sidekiq pods. Expand available resources using the 1 vCPU to 2GB memory ratio for each additional pod.
For further information on resource usage, see the Sidekiq resources.