debian-mirror-gitlab/doc/ci/yaml/README.md
2020-10-24 23:57:45 +05:30

4745 lines
166 KiB
Markdown
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
stage: Verify
group: Continuous Integration
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
type: reference
---
# GitLab CI/CD pipeline configuration reference
GitLab CI/CD [pipelines](../pipelines/index.md) are configured using a YAML file called `.gitlab-ci.yml` within each project.
The `.gitlab-ci.yml` file defines the structure and order of the pipelines and determines:
- What to execute using [GitLab Runner](https://docs.gitlab.com/runner/).
- What decisions to make when specific conditions are encountered. For example, when a process succeeds or fails.
This topic covers CI/CD pipeline configuration. For other CI/CD configuration information, see:
- [GitLab CI/CD Variables](../variables/README.md), for configuring the environment the pipelines run in.
- [GitLab Runner advanced configuration](https://docs.gitlab.com/runner/configuration/advanced-configuration.html), for configuring GitLab Runner.
We have complete examples of configuring pipelines:
- For a quick introduction to GitLab CI/CD, follow our [quick start guide](../quick_start/README.md).
- For a collection of examples, see [GitLab CI/CD Examples](../examples/README.md).
- To see a large `.gitlab-ci.yml` file used in an enterprise, see the [`.gitlab-ci.yml` file for `gitlab`](https://gitlab.com/gitlab-org/gitlab/blob/master/.gitlab-ci.yml).
> For some additional information about GitLab CI/CD:
>
> - <i class="fa fa-youtube-play youtube" aria-hidden="true"></i>&nbsp;Watch the [CI/CD Ease of configuration](https://www.youtube.com/embed/opdLqwz6tcE) video.
> - Watch the [Making the case for CI/CD in your organization](https://about.gitlab.com/compare/github-actions-alternative/)
> webcast to learn the benefits of CI/CD and how to measure the results of CI/CD automation.
> - <i class="fa fa-youtube-play youtube" aria-hidden="true"></i>&nbsp;Learn how [Verizon reduced rebuilds](https://about.gitlab.com/blog/2019/02/14/verizon-customer-story/)
> from 30 days to under 8 hours with GitLab.
NOTE: **Note:**
If you have a [mirrored repository that GitLab pulls from](../../user/project/repository/repository_mirroring.md#pulling-from-a-remote-repository-starter),
you may need to enable pipeline triggering. Go to your project's
**Settings > Repository > Pull from a remote repository > Trigger pipelines for mirror updates**.
## Introduction
Pipeline configuration begins with jobs. Jobs are the most fundamental element of a `.gitlab-ci.yml` file.
Jobs are:
- Defined with constraints stating under what conditions they should be executed.
- Top-level elements with an arbitrary name and must contain at least the [`script`](#script) clause.
- Not limited in how many can be defined.
For example:
```yaml
job1:
script: "execute-script-for-job1"
job2:
script: "execute-script-for-job2"
```
The above example is the simplest possible CI/CD configuration with two separate
jobs, where each of the jobs executes a different command.
Of course a command can execute code directly (`./configure;make;make install`)
or run a script (`test.sh`) in the repository.
Jobs are picked up by [runners](../runners/README.md) and executed within the
environment of the runner. What is important is that each job is run
independently from each other.
### Validate the `.gitlab-ci.yml`
Each instance of GitLab CI/CD has an embedded debug tool called Lint, which validates the
content of your `.gitlab-ci.yml` files. You can find the Lint under the page `ci/lint` of your
project namespace. For example, `https://gitlab.example.com/gitlab-org/project-123/-/ci/lint`.
### Unavailable names for jobs
Each job must have a unique name, but there are a few **reserved `keywords` that
can't be used as job names**:
- `image`
- `services`
- `stages`
- `types`
- `before_script`
- `after_script`
- `variables`
- `cache`
- `include`
### Using reserved keywords
If you get validation error when using specific values (for example, `true` or `false`), try to:
- Quote them.
- Change them to a different form. For example, `/bin/true`.
## Configuration parameters
A job is defined as a list of parameters that define the job's behavior.
The following table lists available parameters for jobs:
| Keyword | Description |
|:---------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [`script`](#script) | Shell script that is executed by a runner. |
| [`after_script`](#before_script-and-after_script) | Override a set of commands that are executed after job. |
| [`allow_failure`](#allow_failure) | Allow job to fail. Failed job does not contribute to commit status. |
| [`artifacts`](#artifacts) | List of files and directories to attach to a job on success. Also available: `artifacts:paths`, `artifacts:exclude`, `artifacts:expose_as`, `artifacts:name`, `artifacts:untracked`, `artifacts:when`, `artifacts:expire_in`, `artifacts:reports`. |
| [`before_script`](#before_script-and-after_script) | Override a set of commands that are executed before job. |
| [`cache`](#cache) | List of files that should be cached between subsequent runs. Also available: `cache:paths`, `cache:key`, `cache:untracked`, and `cache:policy`. |
| [`coverage`](#coverage) | Code coverage settings for a given job. |
| [`dependencies`](#dependencies) | Restrict which artifacts are passed to a specific job by providing a list of jobs to fetch artifacts from. |
| [`environment`](#environment) | Name of an environment to which the job deploys. Also available: `environment:name`, `environment:url`, `environment:on_stop`, `environment:auto_stop_in` and `environment:action`. |
| [`except`](#onlyexcept-basic) | Limit when jobs are not created. Also available: [`except:refs`, `except:kubernetes`, `except:variables`, and `except:changes`](#onlyexcept-advanced). |
| [`extends`](#extends) | Configuration entries that this job inherits from. |
| [`image`](#image) | Use Docker images. Also available: `image:name` and `image:entrypoint`. |
| [`include`](#include) | Allows this job to include external YAML files. Also available: `include:local`, `include:file`, `include:template`, and `include:remote`. |
| [`interruptible`](#interruptible) | Defines if a job can be canceled when made redundant by a newer run. |
| [`only`](#onlyexcept-basic) | Limit when jobs are created. Also available: [`only:refs`, `only:kubernetes`, `only:variables`, and `only:changes`](#onlyexcept-advanced). |
| [`pages`](#pages) | Upload the result of a job to use with GitLab Pages. |
| [`parallel`](#parallel) | How many instances of a job should be run in parallel. |
| [`release`](#release) | Instructs the runner to generate a [Release](../../user/project/releases/index.md) object. |
| [`resource_group`](#resource_group) | Limit job concurrency. |
| [`retry`](#retry) | When and how many times a job can be auto-retried in case of a failure. |
| [`rules`](#rules) | List of conditions to evaluate and determine selected attributes of a job, and whether or not it's created. May not be used alongside `only`/`except`. |
| [`services`](#services) | Use Docker services images. Also available: `services:name`, `services:alias`, `services:entrypoint`, and `services:command`. |
| [`stage`](#stage) | Defines a job stage (default: `test`). |
| [`tags`](#tags) | List of tags that are used to select a runner. |
| [`timeout`](#timeout) | Define a custom job-level timeout that takes precedence over the project-wide setting. |
| [`trigger`](#trigger) | Defines a downstream pipeline trigger. |
| [`variables`](#variables) | Define job variables on a job level. |
| [`when`](#when) | When to run job. Also available: `when:manual` and `when:delayed`. |
## Global parameters
Some parameters must be defined at a global level, affecting all jobs in the pipeline.
### Global defaults
Some parameters can be set globally as the default for all jobs using the
`default:` keyword. Default parameters can then be overridden by job-specific
configuration.
The following job parameters can be defined inside a `default:` block:
- [`image`](#image)
- [`services`](#services)
- [`before_script`](#before_script-and-after_script)
- [`after_script`](#before_script-and-after_script)
- [`tags`](#tags)
- [`cache`](#cache)
- [`artifacts`](#artifacts)
- [`retry`](#retry)
- [`timeout`](#timeout)
- [`interruptible`](#interruptible)
In the following example, the `ruby:2.5` image is set as the default for all
jobs except the `rspec 2.6` job, which uses the `ruby:2.6` image:
```yaml
default:
image: ruby:2.5
rspec:
script: bundle exec rspec
rspec 2.6:
image: ruby:2.6
script: bundle exec rspec
```
#### `inherit`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/207484) in GitLab 12.9.
You can disable inheritance of globally defined defaults
and variables with the `inherit:` parameter.
To enable or disable the inheritance of all `variables:` or `default:` parameters, use the following format:
- `default: true` or `default: false`
- `variables: true` or `variables: false`
To inherit only a subset of `default:` parameters or `variables:`, specify what
you wish to inherit, and any not listed will **not** be inherited. Use
one of the following formats:
```yaml
inherit:
default: [parameter1, parameter2]
variables: [VARIABLE1, VARIABLE2]
```
Or:
```yaml
inherit:
default:
- parameter1
- parameter2
variables:
- VARIABLE1
- VARIABLE2
```
In the example below:
- `rubocop`:
- **will** inherit: Nothing.
- `rspec`:
- **will** inherit: the default `image` and the `WEBHOOK_URL` variable.
- will **not** inherit: the default `before_script` and the `DOMAIN` variable.
- `capybara`:
- **will** inherit: the default `before_script` and `image`.
- will **not** inherit: the `DOMAIN` and `WEBHOOK_URL` variables.
- `karma`:
- **will** inherit: the default `image` and `before_script`, and the `DOMAIN` variable.
- will **not** inherit: `WEBHOOK_URL` variable.
```yaml
default:
image: 'ruby:2.4'
before_script:
- echo Hello World
variables:
DOMAIN: example.com
WEBHOOK_URL: https://my-webhook.example.com
rubocop:
inherit:
default: false
variables: false
script: bundle exec rubocop
rspec:
inherit:
default: [image]
variables: [WEBHOOK_URL]
script: bundle exec rspec
capybara:
inherit:
variables: false
script: bundle exec capybara
karma:
inherit:
default: true
variables: [DOMAIN]
script: karma
```
### `stages`
`stages` is used to define stages that contain jobs and is defined
globally for the pipeline.
The specification of `stages` allows for having flexible multi stage pipelines.
The ordering of elements in `stages` defines the ordering of jobs' execution:
1. Jobs of the same stage are run in parallel.
1. Jobs of the next stage are run after the jobs from the previous stage
complete successfully.
Let's consider the following example, which defines 3 stages:
```yaml
stages:
- build
- test
- deploy
```
1. First, all jobs of `build` are executed in parallel.
1. If all jobs of `build` succeed, the `test` jobs are executed in parallel.
1. If all jobs of `test` succeed, the `deploy` jobs are executed in parallel.
1. If all jobs of `deploy` succeed, the commit is marked as `passed`.
1. If any of the previous jobs fails, the commit is marked as `failed` and no
jobs of further stage are executed.
There are also two edge cases worth mentioning:
1. If no `stages` are defined in `.gitlab-ci.yml`, then the `build`,
`test` and `deploy` are allowed to be used as job's stage by default.
1. If a job does not specify a `stage`, the job is assigned the `test` stage.
### `workflow:rules`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/29654) in GitLab 12.5
The top-level `workflow:` key applies to the entirety of a pipeline, and
determines whether or not a pipeline is created. It accepts a single
`rules:` key that operates similarly to [`rules:` defined within jobs](#rules),
enabling dynamic configuration of the pipeline.
If you are new to GitLab CI/CD and `workflow: rules`, you may find the [`workflow:rules` templates](#workflowrules-templates) useful.
To define your own `workflow: rules`, the available configuration options are:
- [`if`](#rulesif): Define a rule.
- [`when`](#when): May be set to `always` or `never` only. If not provided, the default value is `always`.
If a pipeline attempts to run but matches no rule, it's dropped and doesn't run.
Use the example rules below exactly as written to allow pipelines that match the rule
to run. Add `when: never` to prevent pipelines that match the rule from running. See
the [common `if` clauses for `rules`](#common-if-clauses-for-rules) for more examples.
| Example rules | Details |
|------------------------------------------------------|-----------------------------------------------------------|
| `if: '$CI_PIPELINE_SOURCE == "merge_request_event"'` | Control when merge request pipelines run. |
| `if: '$CI_PIPELINE_SOURCE == "push"'` | Control when both branch pipelines and tag pipelines run. |
| `if: $CI_COMMIT_TAG` | Control when tag pipelines run. |
| `if: $CI_COMMIT_BRANCH` | Control when branch pipelines run. |
For example, in the following configuration, pipelines run for all `push` events (changes to
branches and new tags). Only push events with `-wip` in the commit message are excluded. Scheduled
pipelines and merge request pipelines don't run, as there's no rule allowing them.
```yaml
workflow:
rules:
- if: $CI_COMMIT_REF_NAME =~ /-wip$/
when: never
- if: '$CI_PIPELINE_SOURCE == "push"'
```
This example has strict rules, and no other pipelines can run.
Alternatively, you can have loose rules by using only `when: never` rules, followed
by a final `when: always` rule. This allows all types of pipelines, except for any
that match the `when: never` rules:
```yaml
workflow:
rules:
- if: '$CI_PIPELINE_SOURCE == "schedule"'
when: never
- if: '$CI_PIPELINE_SOURCE == "push"'
when: never
- when: always
```
This example never allows pipelines for schedules or `push` (branches and tags) pipelines,
but does allow pipelines in **all** other cases, *including* merge request pipelines.
As with `rules` defined in jobs, be careful not to use a configuration that allows
merge request pipelines and branch pipelines to run at the same time, or you could
have [duplicate pipelines](#prevent-duplicate-pipelines).
#### `workflow:rules` templates
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/217732) in GitLab 13.0.
We provide pre-made templates for use with your pipelines that set up `workflow: rules`
for common scenarios. Usage of these will make things easier and prevent duplicate pipelines from running.
The [`Branch-Pipelines` template](https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/Workflows/Branch-Pipelines.gitlab-ci.yml)
makes your pipelines run for branches and tags.
Branch pipeline status will be displayed within merge requests that use that branch
as a source, but this pipeline type does not support any features offered by
[Merge Request Pipelines](../merge_request_pipelines/) like
[Pipelines for Merge Results](../merge_request_pipelines/#pipelines-for-merged-results-premium)
or [Merge Trains](../merge_request_pipelines/pipelines_for_merged_results/merge_trains/).
Use this template if you are intentionally avoiding those features.
It is [included](#include) as follows:
```yaml
include:
- template: 'Workflows/Branch-Pipelines.gitlab-ci.yml'
```
The [`MergeRequest-Pipelines` template](https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates/Workflows/MergeRequest-Pipelines.gitlab-ci.yml)
makes your pipelines run for the default branch (usually `master`), tags, and
all types of merge request pipelines. Use this template if you use any of the
the [Pipelines for Merge Requests features](../merge_request_pipelines/), as mentioned
above.
It is [included](#include) as follows:
```yaml
include:
- template: 'Workflows/MergeRequest-Pipelines.gitlab-ci.yml'
```
### `include`
> - Introduced in [GitLab Premium](https://about.gitlab.com/pricing/) 10.5.
> - Available for Starter, Premium and Ultimate since 10.6.
> - [Moved](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/42861) to GitLab Core in 11.4.
Using the `include` keyword allows the inclusion of external YAML files. This helps
to break down the CI/CD configuration into multiple files and increases readability for long configuration files.
It's also possible to have template files stored in a central repository and projects include their
configuration files. This helps avoid duplicated configuration, for example, global default variables for all projects.
`include` requires the external YAML file to have the extensions `.yml` or `.yaml`,
otherwise the external file is not included.
`include` supports the following inclusion methods:
| Method | Description |
|:--------------------------------|:------------------------------------------------------------------|
| [`local`](#includelocal) | Include a file from the local project repository. |
| [`file`](#includefile) | Include a file from a different project repository. |
| [`remote`](#includeremote) | Include a file from a remote URL. Must be publicly accessible. |
| [`template`](#includetemplate) | Include templates that are provided by GitLab. |
The `include` methods do not support [variable expansion](../variables/where_variables_can_be_used.md#variables-usage).
NOTE: **Note:**
`.gitlab-ci.yml` configuration included by all methods is evaluated at pipeline creation.
The configuration is a snapshot in time and persisted in the database. Any changes to
referenced `.gitlab-ci.yml` configuration is not reflected in GitLab until the next pipeline is created.
The files defined by `include` are:
- Deep merged with those in `.gitlab-ci.yml`.
- Always evaluated first and merged with the content of `.gitlab-ci.yml`,
regardless of the position of the `include` keyword.
TIP: **Tip:**
Use merging to customize and override included CI/CD configurations with local
definitions. Local definitions in `.gitlab-ci.yml` override included definitions.
NOTE: **Note:**
Using [YAML anchors](#anchors) across different YAML files sourced by `include` is not
supported. You must only refer to anchors in the same file. Instead
of using YAML anchors, you can use the [`extends` keyword](#extends).
#### `include:local`
`include:local` includes a file from the same repository as `.gitlab-ci.yml`.
It's referenced using full paths relative to the root directory (`/`).
You can only use files that are tracked by Git on the same branch
your configuration file is on. In other words, when using a `include:local`, make
sure that both `.gitlab-ci.yml` and the local file are on the same branch.
All [nested includes](#nested-includes) are executed in the scope of the same project,
so it's possible to use local, project, remote, or template includes.
NOTE: **Note:**
Including local files through Git submodules paths is not supported.
Example:
```yaml
include:
- local: '/templates/.gitlab-ci-template.yml'
```
TIP: **Tip:**
Local includes can be used as a replacement for symbolic links that are not followed.
This can be defined as a short local include:
```yaml
include: '.gitlab-ci-production.yml'
```
#### `include:file`
> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/53903) in GitLab 11.7.
To include files from another private project under the same GitLab instance,
use `include:file`. This file is referenced using full paths relative to the
root directory (`/`). For example:
```yaml
include:
- project: 'my-group/my-project'
file: '/templates/.gitlab-ci-template.yml'
```
You can also specify `ref`, with the default being the `HEAD` of the project:
```yaml
include:
- project: 'my-group/my-project'
ref: master
file: '/templates/.gitlab-ci-template.yml'
- project: 'my-group/my-project'
ref: v1.0.0
file: '/templates/.gitlab-ci-template.yml'
- project: 'my-group/my-project'
ref: 787123b47f14b552955ca2786bc9542ae66fee5b # Git SHA
file: '/templates/.gitlab-ci-template.yml'
```
All [nested includes](#nested-includes) are executed in the scope of the target project,
so it's possible to use local (relative to target project), project, remote
or template includes.
#### `include:remote`
`include:remote` can be used to include a file from a different location,
using HTTP/HTTPS, referenced by using the full URL. The remote file must be
publicly accessible through a simple GET request as authentication schemas
in the remote URL are not supported. For example:
```yaml
include:
- remote: 'https://gitlab.com/awesome-project/raw/master/.gitlab-ci-template.yml'
```
All [nested includes](#nested-includes) are executed without context as public user, so only another remote
or public project, or template, is allowed.
#### `include:template`
> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/53445) in GitLab 11.7.
`include:template` can be used to include `.gitlab-ci.yml` templates that are
[shipped with GitLab](https://gitlab.com/gitlab-org/gitlab/tree/master/lib/gitlab/ci/templates).
For example:
```yaml
# File sourced from GitLab's template collection
include:
- template: Auto-DevOps.gitlab-ci.yml
```
Multiple `include:template` files:
```yaml
include:
- template: Android-Fastlane.gitlab-ci.yml
- template: Auto-DevOps.gitlab-ci.yml
```
All [nested includes](#nested-includes) are executed only with the permission of the user,
so it's possible to use project, remote or template includes.
#### Nested includes
> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/56836) in GitLab 11.9.
Nested includes allow you to compose a set of includes.
A total of 100 includes is allowed, but duplicate includes are considered a configuration error.
Since [GitLab 12.4](https://gitlab.com/gitlab-org/gitlab/-/issues/28212), the time limit
for resolving all files is 30 seconds.
#### Additional `includes` examples
There is a list of [additional `includes` examples](includes.md) available.
## Parameter details
The following are detailed explanations for parameters used to configure CI/CD pipelines.
### `image`
Used to specify [a Docker image](../docker/using_docker_images.md#what-is-an-image) to use for the job.
For:
- Simple definition examples, see [Define `image` and `services` from `.gitlab-ci.yml`](../docker/using_docker_images.md#define-image-and-services-from-gitlab-ciyml).
- Detailed usage information, refer to [Docker integration](../docker/README.md) documentation.
#### `image:name`
An [extended Docker configuration option](../docker/using_docker_images.md#extended-docker-configuration-options).
For more information, see [Available settings for `image`](../docker/using_docker_images.md#available-settings-for-image).
#### `image:entrypoint`
An [extended Docker configuration option](../docker/using_docker_images.md#extended-docker-configuration-options).
For more information, see [Available settings for `image`](../docker/using_docker_images.md#available-settings-for-image).
#### `services`
Used to specify a [service Docker image](../docker/using_docker_images.md#what-is-a-service), linked to a base image specified in [`image`](#image).
For:
- Simple definition examples, see [Define `image` and `services` from `.gitlab-ci.yml`](../docker/using_docker_images.md#define-image-and-services-from-gitlab-ciyml).
- Detailed usage information, refer to [Docker integration](../docker/README.md) documentation.
- For example services, see [GitLab CI/CD Services](../services/README.md).
##### `services:name`
An [extended Docker configuration option](../docker/using_docker_images.md#extended-docker-configuration-options).
For more information, see [Available settings for `services`](../docker/using_docker_images.md#available-settings-for-services).
##### `services:alias`
An [extended Docker configuration option](../docker/using_docker_images.md#extended-docker-configuration-options).
For more information, see [Available settings for `services`](../docker/using_docker_images.md#available-settings-for-services).
##### `services:entrypoint`
An [extended Docker configuration option](../docker/using_docker_images.md#extended-docker-configuration-options).
For more information, see [Available settings for `services`](../docker/using_docker_images.md#available-settings-for-services).
##### `services:command`
An [extended Docker configuration option](../docker/using_docker_images.md#extended-docker-configuration-options).
For more information, see [Available settings for `services`](../docker/using_docker_images.md#available-settings-for-services).
### `script`
`script` is the only required keyword that a job needs. It's a shell script
that is executed by the runner. For example:
```yaml
job:
script: "bundle exec rspec"
```
[YAML anchors for scripts](#yaml-anchors-for-script) are available.
This parameter can also contain several commands using an array:
```yaml
job:
script:
- uname -a
- bundle exec rspec
```
NOTE: **Note:**
Sometimes, `script` commands must be wrapped in single or double quotes.
For example, commands that contain a colon (`:`) must be wrapped in quotes so
that the YAML parser knows to interpret the whole thing as a string rather than
a "key: value" pair. Be careful when using special characters:
`:`, `{`, `}`, `[`, `]`, `,`, `&`, `*`, `#`, `?`, `|`, `-`, `<`, `>`, `=`, `!`, `%`, `@`, `` ` ``.
If any of the script commands return an exit code other than zero, the job
fails and further commands are not executed. You can avoid this behavior by
storing the exit code in a variable:
```yaml
job:
script:
- false || exit_code=$?
- if [ $exit_code -ne 0 ]; then echo "Previous command failed"; fi;
```
#### `before_script` and `after_script`
> Introduced in GitLab 8.7 and requires GitLab Runner v1.2.
`before_script` is used to define a command that should be run before each
job, including deploy jobs, but after the restoration of any [artifacts](#artifacts).
This must be an array.
Scripts specified in `before_script` are concatenated with any scripts specified
in the main [`script`](#script), and executed together in a single shell.
`after_script` is used to define the command that runs after each
job, including failed ones. This must be an array.
Scripts specified in `after_script` are executed in a new shell, separate from any
`before_script` or `script` scripts. As a result, they:
- Have a current working directory set back to the default.
- Have no access to changes done by scripts defined in `before_script` or `script`, including:
- Command aliases and variables exported in `script` scripts.
- Changes outside of the working tree (depending on the runner executor), like
software installed by a `before_script` or `script` script.
- Have a separate timeout, which is hard coded to 5 minutes. See
[related issue](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/2716) for details.
- Don't affect the job's exit code. If the `script` section succeeds and the
`after_script` times out or fails, the job exits with code `0` (`Job Succeeded`).
It's possible to overwrite a globally defined `before_script` or `after_script`
if you set it per-job:
```yaml
default:
before_script:
- global before script
job:
before_script:
- execute this instead of global before script
script:
- my command
after_script:
- execute this after my script
```
[YAML anchors for `before_script` and `after_script`](#yaml-anchors-for-before_script-and-after_script) are available.
#### Coloring script output
Script output can be colored using [ANSI escape codes](https://en.wikipedia.org/wiki/ANSI_escape_code#Colors),
or by running commands or programs that output ANSI escape codes.
For example, using [Bash with color codes](https://misc.flogisoft.com/bash/tip_colors_and_formatting):
```yaml
job:
script:
- echo -e "\e[31mThis text is red,\e[0m but this text isn't\e[31m however this text is red again."
```
You can define the color codes in Shell variables, or even [custom environment variables](../variables/README.md#custom-environment-variables),
which makes the commands easier to read and reusable.
For example, using the same example as above and variables defined in a `before_script`:
```yaml
job:
before_script:
- TXT_RED="\e[31m" && TXT_CLEAR="\e[0m"
script:
- echo -e "${TXT_RED}This text is red,${TXT_CLEAR} but this part isn't${TXT_RED} however this part is again."
- echo "This text is not colored"
```
Or with [PowerShell color codes](https://superuser.com/a/1259916):
```yaml
job:
before_script:
- $esc="$([char]27)"; $TXT_RED="$esc[31m"; $TXT_CLEAR="$esc[0m"
script:
- Write-Host $TXT_RED"This text is red,"$TXT_CLEAR" but this text isn't"$TXT_RED" however this text is red again."
- Write-Host "This text is not colored"
```
#### Multi-line commands
You can split long commands into multi-line commands to improve readability
using [`|` (literal) and `>` (folded) YAML multi-line block scalar indicators](https://yaml-multiline.info/).
CAUTION: **Warning:**
If multiple commands are combined into one command string, only the last command's
failure or success is reported,
[incorrectly ignoring failures from earlier commands due to a bug](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/25394).
If the success of the job depends on the success or failure of these commands,
you can run the commands as separate `script:` items, or add `exit 1` commands
as appropriate to the command string where needed.
You can use the `|` (literal) YAML multiline block scalar indicator to write
commands over multiple lines in the `script` section of a job description.
Each line is treated as a separate command.
Only the first command is repeated in the job log, but additional
commands are still executed:
```yaml
job:
script:
- |
echo "First command line."
echo "Second command line."
echo "Third command line."
```
The example above renders in the job log as:
```shell
$ echo First command line # collapsed multi-line command
First command line
Second command line.
Third command line.
```
The `>` (folded) YAML multiline block scalar indicator treats empty lines between
sections as the start of a new command:
```yaml
job:
script:
- >
echo "First command line
is split over two lines."
echo "Second command line."
```
This behaves similarly to writing multiline commands without the `>` or `|` block
scalar indicators:
```yaml
job:
script:
- echo "First command line
is split over two lines."
echo "Second command line."
```
Both examples above render in the job log as:
```shell
$ echo First command line is split over two lines. # collapsed multi-line command
First command line is split over two lines.
Second command line.
```
When you omit the `>` or `|` block scalar indicators, GitLab forms the command
by concatenating non-empty lines, so make sure the lines can run when concatenated.
Shell [here documents](https://en.wikipedia.org/wiki/Here_document) work with the
`|` and `>` operators as well. The example below transliterates the lower case letters
to upper case:
```yaml
job:
script:
- |
tr a-z A-Z << END_TEXT
one two three
four five six
END_TEXT
```
Results in:
```shell
$ tr a-z A-Z << END_TEXT # collapsed multi-line command
ONE TWO THREE
FOUR FIVE SIX
```
#### Custom collapsible sections
See [custom collapsible sections](../pipelines/index.md#custom-collapsible-sections).
### `stage`
`stage` is defined per-job and relies on [`stages`](#stages), which is defined
globally. It allows to group jobs into different stages, and jobs of the same
`stage` are executed in parallel (subject to [certain conditions](#using-your-own-runners)). For example:
```yaml
stages:
- build
- test
- deploy
job 0:
stage: .pre
script: make something useful before build stage
job 1:
stage: build
script: make build dependencies
job 2:
stage: build
script: make build artifacts
job 3:
stage: test
script: make test
job 4:
stage: deploy
script: make deploy
job 5:
stage: .post
script: make something useful at the end of pipeline
```
#### Using your own runners
When you use your own runners, GitLab Runner runs only one job at a time by default. See the
`concurrent` flag in [runner global settings](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-global-section)
for more information.
Jobs run on your own runners in parallel only if:
- Run on different runners.
- The runner's `concurrent` setting has been changed.
#### `.pre` and `.post`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/31441) in GitLab 12.4.
The following stages are available to every pipeline:
- `.pre`, which is guaranteed to always be the first stage in a pipeline.
- `.post`, which is guaranteed to always be the last stage in a pipeline.
User-defined stages are executed after `.pre` and before `.post`.
The order of `.pre` and `.post` can't be changed, even if defined out of order in `.gitlab-ci.yml`.
For example, the following are equivalent configuration:
- Configured in order:
```yaml
stages:
- .pre
- a
- b
- .post
```
- Configured out of order:
```yaml
stages:
- a
- .pre
- b
- .post
```
- Not explicitly configured:
```yaml
stages:
- a
- b
```
NOTE: **Note:**
A pipeline is not created if all jobs are in `.pre` or `.post` stages.
### `extends`
> Introduced in GitLab 11.3.
`extends` defines entry names that a job that uses `extends`
inherits from.
It's an alternative to using [YAML anchors](#anchors) and is a little
more flexible and readable:
```yaml
.tests:
script: rake test
stage: test
only:
refs:
- branches
rspec:
extends: .tests
script: rake rspec
only:
variables:
- $RSPEC
```
In the example above, the `rspec` job inherits from the `.tests` template job.
GitLab performs a reverse deep merge based on the keys. GitLab:
- Merges the `rspec` contents into `.tests` recursively.
- Doesn't merge the values of the keys.
The result is this `rspec` job:
```yaml
rspec:
script: rake rspec
stage: test
only:
refs:
- branches
variables:
- $RSPEC
```
NOTE: **Note:**
Note that `script: rake test` has been overwritten by `script: rake rspec`.
If you do want to include the `rake test`, see [`before_script` and `after_script`](#before_script-and-after_script).
`.tests` in this example is a [hidden job](#hide-jobs), but it's
possible to inherit from regular jobs as well.
`extends` supports multi-level inheritance. You should avoid using more than 3 levels,
but you can use as many as ten.
The following example has two levels of inheritance:
```yaml
.tests:
only:
- pushes
.rspec:
extends: .tests
script: rake rspec
rspec 1:
variables:
RSPEC_SUITE: '1'
extends: .rspec
rspec 2:
variables:
RSPEC_SUITE: '2'
extends: .rspec
spinach:
extends: .tests
script: rake spinach
```
In GitLab 12.0 and later, it's also possible to use multiple parents for
`extends`.
#### Merge details
`extends` is able to merge hashes but not arrays.
The algorithm used for merge is "closest scope wins", so
keys from the last member always override anything defined on other
levels. For example:
```yaml
.only-important:
variables:
URL: "http://my-url.internal"
IMPORTANT_VAR: "the details"
only:
- master
- stable
tags:
- production
script:
- echo "Hello world!"
.in-docker:
variables:
URL: "http://docker-url.internal"
tags:
- docker
image: alpine
rspec:
variables:
GITLAB: "is-awesome"
extends:
- .only-important
- .in-docker
script:
- rake rspec
```
This results in the following `rspec` job:
```yaml
rspec:
variables:
URL: "http://docker-url.internal"
IMPORTANT_VAR: "the details"
GITLAB: "is-awesome"
only:
- master
- stable
tags:
- docker
image: alpine
script:
- rake rspec
```
Note that in the example above:
- `variables` sections have been merged but that `URL: "http://my-url.internal"`
has been overwritten by `URL: "http://docker-url.internal"`.
- `tags: ['production']` has been overwritten by `tags: ['docker']`.
- `script` has not been merged but rather `script: ['echo "Hello world!"']` has
been overwritten by `script: ['rake rspec']`. Arrays can be
merged using [YAML anchors](#anchors).
#### Using `extends` and `include` together
`extends` works across configuration files combined with `include`.
For example, if you have a local `included.yml` file:
```yaml
.template:
script:
- echo Hello!
```
Then, in `.gitlab-ci.yml` you can use it like this:
```yaml
include: included.yml
useTemplate:
image: alpine
extends: .template
```
This example runs a job called `useTemplate` that runs `echo Hello!` as defined in
the `.template` job, and uses the `alpine` Docker image as defined in the local job.
### `rules`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27863) in GitLab 12.3.
The `rules` keyword can be used to include or exclude jobs in pipelines.
Rules are evaluated *in order* until the first match. When matched, the job
is either included or excluded from the pipeline, depending on the configuration.
If included, the job also has [certain attributes](#rules-attributes)
added to it.
CAUTION: **Caution:**
`rules` replaces [`only/except`](#onlyexcept-basic) and can't be used in conjunction with it.
If you attempt to use both keywords in the same job, the linter returns a
`key may not be used with rules` error.
#### Rules attributes
The job attributes allowed by `rules` are:
- [`when`](#when): If not defined, defaults to `when: on_success`.
- If used as `when: delayed`, `start_in` is also required.
- [`allow_failure`](#allow_failure): If not defined, defaults to `allow_failure: false`.
If a rule evaluates to true, and `when` has any value except `never`, the job is included in the pipeline.
For example:
```yaml
docker build:
script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:
- if: '$CI_COMMIT_BRANCH == "master"'
when: delayed
start_in: '3 hours'
allow_failure: true
```
Additional job configuration may be added to rules in the future. If something
useful is not available, please [open an issue](https://gitlab.com/gitlab-org/gitlab/-/issues).
#### Rules clauses
Available rule clauses are:
| Clause | Description |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| [`if`](#rulesif) | Add or exclude jobs from a pipeline by evaluating an `if` statement. Similar to [`only:variables`](#onlyvariablesexceptvariables). |
| [`changes`](#ruleschanges) | Add or exclude jobs from a pipeline based on what files are changed. Same as [`only:changes`](#onlychangesexceptchanges). |
| [`exists`](#rulesexists) | Add or exclude jobs from a pipeline based on the presence of specific files. |
Rules are evaluated in order until a match is found. If a match is found, the attributes
are checked to see if the job should be added to the pipeline. If no attributes are defined,
the defaults are:
- `when: on_success`
- `allow_failure: false`
The job is added to the pipeline:
- If a rule matches and has `when: on_success`, `when: delayed` or `when: always`.
- If no rules match, but the last clause is `when: on_success`, `when: delayed`
or `when: always` (with no rule).
The job is not added to the pipeline:
- If no rules match, and there is no standalone `when: on_success`, `when: delayed` or
`when: always`.
- If a rule matches, and has `when: never` as the attribute.
For example, using `if` clauses to strictly limit when jobs run:
```yaml
job:
script: "echo Hello, Rules!"
rules:
- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
when: manual
allow_failure: true
- if: '$CI_PIPELINE_SOURCE == "schedule"'
```
In this example:
- If the pipeline is for a merge request, the first rule matches, and the job
is added to the [merge request pipeline](../merge_request_pipelines/index.md)
with attributes of:
- `when: manual` (manual job)
- `allow_failure: true` (allows the pipeline to continue running even if the manual job is not run)
- If the pipeline is **not** for a merge request, the first rule doesn't match, and the
second rule is evaluated.
- If the pipeline is a scheduled pipeline, the second rule matches, and the job
is added to the scheduled pipeline. Since no attributes were defined, it is added
with:
- `when: on_success` (default)
- `allow_failure: false` (default)
- In **all other cases**, no rules match, so the job is **not** added to any other pipeline.
Alternatively, you can define a set of rules to exclude jobs in a few cases, but
run them in all other cases:
```yaml
job:
script: "echo Hello, Rules!"
rules:
- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
when: never
- if: '$CI_PIPELINE_SOURCE == "schedule"'
when: never
- when: on_success
```
- If the pipeline is for a merge request, the job is **not** be added to the pipeline.
- If the pipeline is a scheduled pipeline, the job is **not** be added to the pipeline.
- In **all other cases**, the job is added to the pipeline, with `when: on_success`.
CAUTION: **Caution:**
If you use a `when:` clause as the final rule (not including `when: never`), two
simultaneous pipelines may start. Both push pipelines and merge request pipelines can
be triggered by the same event (a push to the source branch for an open merge request).
See how to [prevent duplicate pipelines](#prevent-duplicate-pipelines)
for more details.
#### Prevent duplicate pipelines
Jobs defined with `rules` can trigger multiple pipelines with the same action. You
don't have to explicitly configure rules for each type of pipeline to trigger them
accidentally. Rules that are too loose (allowing too many types of pipelines) could
cause a second pipeline to run unexpectedly.
Some configurations that have the potential to cause duplicate pipelines cause a
[pipeline warning](../troubleshooting.md#pipeline-warnings) to be displayed.
[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/219431) in GitLab 13.3.
For example:
```yaml
job:
script: "echo This creates double pipelines!"
rules:
- if: '$CUSTOM_VARIABLE == "false"'
when: never
- when: always
```
This job does not run when `$CUSTOM_VARIABLE` is false, but it *does* run in **all**
other pipelines, including **both** push (branch) and merge request pipelines. With
this configuration, every push to an open merge request's source branch
causes duplicated pipelines.
There are multiple ways to avoid this:
- Use [`workflow: rules`](#workflowrules) to specify which types of pipelines
can run. To eliminate duplicate pipelines, allow only merge request pipelines
or push (branch) pipelines.
- Rewrite the rules to run the job only in very specific cases,
and avoid using a final `when:` rule:
```yaml
job:
script: "echo This does NOT create double pipelines!"
rules:
- if: '$CUSTOM_VARIABLE == "true" && $CI_PIPELINE_SOURCE == "merge_request_event"'
```
You can prevent duplicate pipelines by changing the job rules to avoid either push (branch)
pipelines or merge request pipelines. However, if you use a `- when: always` rule without
`workflow: rules`, GitLab still displays a [pipeline warning](../troubleshooting.md#pipeline-warnings).
For example, the following does not trigger double pipelines, but is not recommended
without `workflow: rules`:
```yaml
job:
script: "echo This does NOT create double pipelines!"
rules:
- if: '$CI_PIPELINE_SOURCE == "push"'
when: never
- when: always
```
Do not include both push and merge request pipelines in the same job:
```yaml
job:
script: "echo This creates double pipelines!"
rules:
- if: '$CI_PIPELINE_SOURCE == "push"'
- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
```
Also, do not mix `only/except` jobs with `rules` jobs in the same pipeline.
It may not cause YAML errors, but the different default behaviors of `only/except`
and `rules` can cause issues that are difficult to troubleshoot:
```yaml
job-with-no-rules:
script: "echo This job runs in branch pipelines."
job-with-rules:
script: "echo This job runs in merge request pipelines."
rules:
- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
```
For every change pushed to the branch, duplicate pipelines run. One
branch pipeline runs a single job (`job-with-no-rules`), and one merge request pipeline
runs the other job (`job-with-rules`). Jobs with no rules default
to [`except: merge_requests`](#onlyexcept-basic), so `job-with-no-rules`
runs in all cases except merge requests.
It is not possible to define rules based on whether or not a branch has an open
merge request associated with it. You can't configure a job to be included in:
- Only branch pipelines when the branch doesn't have a merge request associated with it.
- Only merge request pipelines when the branch has a merge request associated with it.
See the [related issue](https://gitlab.com/gitlab-org/gitlab/-/issues/201845) for more details.
#### `rules:if`
`rules:if` clauses determine whether or not jobs are added to a pipeline by evaluating
a simple `if` statement. If the `if` statement is true, the job is either included
or excluded from a pipeline. In plain English, `if` rules can be interpreted as one of:
- "If this rule evaluates to true, add the job" (default).
- "If this rule evaluates to true, do not add the job" (by adding `when: never`).
`rules:if` differs slightly from `only:variables` by accepting only a single
expression string per rule, rather than an array of them. Any set of expressions to be
evaluated can be [conjoined into a single expression](../variables/README.md#conjunction--disjunction)
by using `&&` or `||`, and use
the [variable matching syntax](../variables/README.md#syntax-of-environment-variable-expressions).
`if:` clauses are evaluated based on the values of [predefined environment variables](../variables/predefined_variables.md)
or [custom environment variables](../variables/README.md#custom-environment-variables).
For example:
```yaml
job:
script: "echo Hello, Rules!"
rules:
- if: '$CI_MERGE_REQUEST_SOURCE_BRANCH_NAME =~ /^feature/ && $CI_MERGE_REQUEST_TARGET_BRANCH_NAME == "master"'
when: always
- if: '$CI_MERGE_REQUEST_SOURCE_BRANCH_NAME =~ /^feature/'
when: manual
allow_failure: true
- if: '$CI_MERGE_REQUEST_SOURCE_BRANCH_NAME' # Checking for the presence of a variable is possible
```
Some details regarding the logic that determines the `when` for the job:
- If none of the provided rules match, the job is set to `when: never` and is
not included in the pipeline.
- A rule without any conditional clause, such as a `when` or `allow_failure`
rule without `if` or `changes`, always matches, and is always used if reached.
- If a rule matches and has no `when` defined, the rule uses the `when`
defined for the job, which defaults to `on_success` if not defined.
- You can define `when` once per rule, or once at the job-level, which applies to
all rules. You can't mix `when` at the job-level with `when` in rules.
##### Common `if` clauses for `rules`
For behavior similar to the [`only`/`except` keywords](#onlyexcept-basic), you can
check the value of the `$CI_PIPELINE_SOURCE` variable:
| Value | Description |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `api` | For pipelines triggered by the [pipelines API](../../api/pipelines.md#create-a-new-pipeline). |
| `chat` | For pipelines created by using a [GitLab ChatOps](../chatops/README.md) command. |
| `external` | When using CI services other than GitLab. |
| `external_pull_request_event` | When an external pull request on GitHub is created or updated. See [Pipelines for external pull requests](../ci_cd_for_external_repos/index.md#pipelines-for-external-pull-requests). |
| `merge_request_event` | For pipelines created when a merge request is created or updated. Required to enable [merge request pipelines](../merge_request_pipelines/index.md), [merged results pipelines](../merge_request_pipelines/pipelines_for_merged_results/index.md), and [merge trains](../merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md). |
| `parent_pipeline` | For pipelines triggered by a [parent/child pipeline](../parent_child_pipelines.md) with `rules`, use this in the child pipeline configuration so that it can be triggered by the parent pipeline. |
| `pipeline` | For [multi-project pipelines](../multi_project_pipelines.md) created by [using the API with `CI_JOB_TOKEN`](../multi_project_pipelines.md#triggering-multi-project-pipelines-through-api), or the [`trigger`](#trigger) keyword. |
| `push` | For pipelines triggered by a `git push` event, including for branches and tags. |
| `schedule` | For [scheduled pipelines](../pipelines/schedules.md). |
| `trigger` | For pipelines created by using a [trigger token](../triggers/README.md#trigger-token). |
| `web` | For pipelines created by using **Run pipeline** button in the GitLab UI, from the project's **CI/CD > Pipelines** section. |
| `webide` | For pipelines created by using the [WebIDE](../../user/project/web_ide/index.md). |
For example:
```yaml
job:
script: "echo Hello, Rules!"
rules:
- if: '$CI_PIPELINE_SOURCE == "schedule"'
when: manual
allow_failure: true
- if: '$CI_PIPELINE_SOURCE == "push"'
```
This example runs the job as a manual job in scheduled pipelines or in push
pipelines (to branches or tags), with `when: on_success` (default). It does not
add the job to any other pipeline type.
Another example:
```yaml
job:
script: "echo Hello, Rules!"
rules:
- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
- if: '$CI_PIPELINE_SOURCE == "schedule"'
```
This example runs the job as a `when: on_success` job in [merge request pipelines](../merge_request_pipelines/index.md)
and scheduled pipelines. It does not run in any other pipeline type.
Other commonly used variables for `if` clauses:
- `if: $CI_COMMIT_TAG`: If changes are pushed for a tag.
- `if: $CI_COMMIT_BRANCH`: If changes are pushed to any branch.
- `if: '$CI_COMMIT_BRANCH == "master"'`: If changes are pushed to `master`.
- `if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH'`: If changes are pushed to the default
branch (usually `master`). Useful if reusing the same configuration in multiple
projects with potentially different default branches.
- `if: '$CI_COMMIT_BRANCH =~ /regex-expression/'`: If the commit branch matches a regular expression.
- `if: '$CUSTOM_VARIABLE !~ /regex-expression/'`: If the [custom variable](../variables/README.md#custom-environment-variables)
`CUSTOM_VARIABLE` does **not** match a regular expression.
- `if: '$CUSTOM_VARIABLE == "value1"'`: If the custom variable `CUSTOM_VARIABLE` is
exactly `value1`.
#### `rules:changes`
To determine if jobs should be added to a pipeline, `rules: changes` clauses check
the files changed by Git push events.
`rules: changes` works exactly the same way as [`only: changes` and `except: changes`](#onlychangesexceptchanges),
accepting an array of paths. Similarly, it always returns true if there is no
Git push event, for example, when a new tag is created. It should only be used for branch pipelines or merge request pipelines.
For example:
```yaml
workflow:
rules:
- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
docker build:
script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:
- changes:
- Dockerfile
when: manual
allow_failure: true
```
In this example:
- [`workflow: rules`](#workflowrules) allows only pipelines for merge requests for all jobs.
- If `Dockerfile` has changed, add the job to the pipeline as a manual job, and allow the pipeline
to continue running even if the job is not triggered (`allow_failure: true`).
- If `Dockerfile` has not changed, do not add job to any pipeline (same as `when: never`).
To implement a rule similar to [`except: changes`](#onlychangesexceptchanges),
use `when: never`.
#### `rules:exists`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/24021) in GitLab 12.4.
`exists` accepts an array of paths and matches if any of these paths exist
as files in the repository.
For example:
```yaml
job:
script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:
- exists:
- Dockerfile
```
You can also use glob patterns to match multiple files in any directory within
the repository.
For example:
```yaml
job:
script: bundle exec rspec
rules:
- exists:
- spec/**.rb
```
NOTE: **Note:**
For performance reasons, using `exists` with patterns is limited to 10000
checks. After the 10000th check, rules with patterned globs always match.
#### `rules:allow_failure`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30235) in GitLab 12.8.
You can use [`allow_failure: true`](#allow_failure) within `rules:` to allow a job to fail, or a manual job to
wait for action, without stopping the pipeline itself. All jobs using `rules:` default to `allow_failure: false`
if `allow_failure:` is not defined.
The rule-level `rules:allow_failure` option overrides the job-level
[`allow_failure`](#allow_failure) option, and is only applied when the job is
triggered by the particular rule.
```yaml
job:
script: "echo Hello, Rules!"
rules:
- if: '$CI_MERGE_REQUEST_TARGET_BRANCH_NAME == "master"'
when: manual
allow_failure: true
```
In this example, if the first rule matches, then the job has `when: manual` and `allow_failure: true`.
#### Complex rule clauses
To conjoin `if`, `changes`, and `exists` clauses with an `AND`, use them in the
same rule.
In the following example:
- If the dockerfile or any file in `/docker/scripts` has changed, and var=blah,
then the job runs manually
- Otherwise, the job isn't included in the pipeline.
```yaml
docker build:
script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:
- if: '$VAR == "string value"'
changes: # Will include the job and set to when:manual if any of the follow paths match a modified file.
- Dockerfile
- docker/scripts/*
when: manual
# - when: never would be redundant here, this is implied any time rules are listed.
```
Keywords such as `branches` or `refs` that are currently available for
`only`/`except` are not yet available in `rules` as they are being individually
considered for their usage and behavior in this context. Future keyword improvements
are being discussed in our [epic for improving `rules`](https://gitlab.com/groups/gitlab-org/-/epics/2783),
where anyone can add suggestions or requests.
You can use [parentheses](../variables/README.md#parentheses) with `&&` and `||` to build more complicated variable expressions.
[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/230938) in GitLab 13.3:
```yaml
job1:
script:
- echo This rule uses parentheses.
rules:
if: ($CI_COMMIT_BRANCH == "master" || $CI_COMMIT_BRANCH == "develop") && $MY_VARIABLE
```
NOTE: **Note:**
In GitLab 13.2 and older, the order of operations when mixing `||` and `&&` in a single rule may not have executed
in the expected order. This is [fixed](https://gitlab.com/gitlab-org/gitlab/-/issues/230938)
in GitLab 13.3.
### `only`/`except` (basic)
NOTE: **Note:**
The [`rules`](#rules) syntax is an improved, more powerful solution for defining
when jobs should run or not. Consider using `rules` instead of `only/except` to get
the most out of your pipelines.
`only` and `except` are two parameters that set a job policy to limit when
jobs are created:
1. `only` defines the names of branches and tags the job runs for.
1. `except` defines the names of branches and tags the job does
**not** run for.
There are a few rules that apply to the usage of job policy:
- `only` and `except` are inclusive. If both `only` and `except` are defined
in a job specification, the ref is filtered by `only` and `except`.
- `only` and `except` allow the use of regular expressions ([supported regexp syntax](#supported-onlyexcept-regexp-syntax)).
- `only` and `except` allow to specify a repository path to filter jobs for
forks.
In addition, `only` and `except` allow the use of special keywords:
| **Value** | **Description** |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| `api` | For pipelines triggered by the [pipelines API](../../api/pipelines.md#create-a-new-pipeline). |
| `branches` | When the Git reference for a pipeline is a branch. |
| `chat` | For pipelines created by using a [GitLab ChatOps](../chatops/README.md) command. |
| `external` | When using CI services other than GitLab. |
| `external_pull_requests` | When an external pull request on GitHub is created or updated (See [Pipelines for external pull requests](../ci_cd_for_external_repos/index.md#pipelines-for-external-pull-requests)). |
| `merge_requests` | For pipelines created when a merge request is created or updated. Enables [merge request pipelines](../merge_request_pipelines/index.md), [merged results pipelines](../merge_request_pipelines/pipelines_for_merged_results/index.md), and [merge trains](../merge_request_pipelines/pipelines_for_merged_results/merge_trains/index.md). |
| `pipelines` | For [multi-project pipelines](../multi_project_pipelines.md) created by [using the API with `CI_JOB_TOKEN`](../multi_project_pipelines.md#triggering-multi-project-pipelines-through-api), or the [`trigger`](#trigger) keyword. |
| `pushes` | For pipelines triggered by a `git push` event, including for branches and tags. |
| `schedules` | For [scheduled pipelines](../pipelines/schedules.md). |
| `tags` | When the Git reference for a pipeline is a tag. |
| `triggers` | For pipelines created by using a [trigger token](../triggers/README.md#trigger-token). |
| `web` | For pipelines created by using **Run pipeline** button in the GitLab UI, from the project's **CI/CD > Pipelines** section. |
In the example below, `job` will run only for refs that start with `issue-`,
whereas all branches will be skipped:
```yaml
job:
# use regexp
only:
- /^issue-.*$/
# use special keyword
except:
- branches
```
Pattern matching is case-sensitive by default. Use `i` flag modifier, like
`/pattern/i` to make a pattern case-insensitive:
```yaml
job:
# use regexp
only:
- /^issue-.*$/i
# use special keyword
except:
- branches
```
In this example, `job` will run only for refs that are tagged, or if a build is
explicitly requested via an API trigger or a [Pipeline Schedule](../pipelines/schedules.md):
```yaml
job:
# use special keywords
only:
- tags
- triggers
- schedules
```
The repository path can be used to have jobs executed only for the parent
repository and not forks:
```yaml
job:
only:
- branches@gitlab-org/gitlab
except:
- master@gitlab-org/gitlab
- /^release/.*$/@gitlab-org/gitlab
```
The above example will run `job` for all branches on `gitlab-org/gitlab`,
except `master` and those with names prefixed with `release/`.
If a job does not have an `only` rule, `only: ['branches', 'tags']` is set by
default. If it does not have an `except` rule, it's empty.
For example,
```yaml
job:
script: echo 'test'
```
is translated to:
```yaml
job:
script: echo 'test'
only: ['branches', 'tags']
```
#### Regular expressions
Because `@` is used to denote the beginning of a ref's repository path,
matching a ref name containing the `@` character in a regular expression
requires the use of the hex character code match `\x40`.
Only the tag or branch name can be matched by a regular expression.
The repository path, if given, is always matched literally.
If a regular expression shall be used to match the tag or branch name,
the entire ref name part of the pattern has to be a regular expression,
and must be surrounded by `/`.
(With regular expression flags appended after the closing `/`.)
So `issue-/.*/` won't work to match all tag names or branch names
that begin with `issue-`.
TIP: **Tip:**
Use anchors `^` and `$` to avoid the regular expression
matching only a substring of the tag name or branch name.
For example, `/^issue-.*$/` is equivalent to `/^issue-/`,
while just `/issue/` would also match a branch called `severe-issues`.
#### Supported `only`/`except` regexp syntax
CAUTION: **Warning:**
This is a breaking change that was introduced with GitLab 11.9.4.
In GitLab 11.9.4, GitLab begun internally converting regexp used
in `only` and `except` parameters to [RE2](https://github.com/google/re2/wiki/Syntax).
This means that only subset of features provided by [Ruby Regexp](https://ruby-doc.org/core/Regexp.html)
is supported. [RE2](https://github.com/google/re2/wiki/Syntax) limits the set of features
provided due to computational complexity, which means some features became unavailable in GitLab 11.9.4.
For example, negative lookaheads.
For GitLab versions from 11.9.7 and up to GitLab 12.0, GitLab provides a feature flag that can be
enabled by administrators that allows users to use unsafe regexp syntax. This brings compatibility
with previously allowed syntax version and allows users to gracefully migrate to the new syntax.
```ruby
Feature.enable(:allow_unsafe_ruby_regexp)
```
### `only`/`except` (advanced)
CAUTION: **Warning:**
This is an _alpha_ feature, and is subject to change at any time without
prior notice!
GitLab supports both simple and complex strategies, so it's possible to use an
array and a hash configuration scheme.
Four keys are available:
- `refs`
- `variables`
- `changes`
- `kubernetes`
If you use multiple keys under `only` or `except`, the keys will be evaluated as a
single conjoined expression. That is:
- `only:` means "include this job if all of the conditions match".
- `except:` means "exclude this job if any of the conditions match".
With `only`, individual keys are logically joined by an AND:
> (any of refs) AND (any of variables) AND (any of changes) AND (if Kubernetes is active)
In the example below, the `test` job will `only` be created when **all** of the following are true:
- The pipeline has been [scheduled](../../user/project/pipelines/schedules.md) **or** runs for `master`.
- The `variables` keyword matches.
- The `kubernetes` service is active on the project.
```yaml
test:
script: npm run test
only:
refs:
- master
- schedules
variables:
- $CI_COMMIT_MESSAGE =~ /run-end-to-end-tests/
kubernetes: active
```
`except` is implemented as a negation of this complete expression:
> NOT((any of refs) AND (any of variables) AND (any of changes) AND (if Kubernetes is active))
This means the keys are treated as if joined by an OR. This relationship could be described as:
> (any of refs) OR (any of variables) OR (any of changes) OR (if Kubernetes is active)
In the example below, the `test` job will **not** be created when **any** of the following are true:
- The pipeline runs for the `master`.
- There are changes to the `README.md` file in the root directory of the repository.
```yaml
test:
script: npm run test
except:
refs:
- master
changes:
- "README.md"
```
#### `only:refs`/`except:refs`
> `refs` policy introduced in GitLab 10.0.
The `refs` strategy can take the same values as the
[simplified only/except configuration](#onlyexcept-basic).
In the example below, the `deploy` job is going to be created only when the
pipeline has been [scheduled](../pipelines/schedules.md) or runs for the `master` branch:
```yaml
deploy:
only:
refs:
- master
- schedules
```
#### `only:kubernetes`/`except:kubernetes`
> `kubernetes` policy introduced in GitLab 10.0.
The `kubernetes` strategy accepts only the `active` keyword.
In the example below, the `deploy` job is going to be created only when the
Kubernetes service is active in the project:
```yaml
deploy:
only:
kubernetes: active
```
#### `only:variables`/`except:variables`
> `variables` policy introduced in GitLab 10.7.
The `variables` keyword is used to define variables expressions. In other words,
you can use predefined variables / project / group or
environment-scoped variables to define an expression GitLab is going to
evaluate in order to decide whether a job should be created or not.
Examples of using variables expressions:
```yaml
deploy:
script: cap staging deploy
only:
refs:
- branches
variables:
- $RELEASE == "staging"
- $STAGING
```
Another use case is excluding jobs depending on a commit message:
```yaml
end-to-end:
script: rake test:end-to-end
except:
variables:
- $CI_COMMIT_MESSAGE =~ /skip-end-to-end-tests/
```
You can use [parentheses](../variables/README.md#parentheses) with `&&` and `||` to build more complicated variable expressions.
[Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/230938) in GitLab 13.3:
```yaml
job1:
script:
- echo This rule uses parentheses.
only:
variables:
- ($CI_COMMIT_BRANCH == "master" || $CI_COMMIT_BRANCH == "develop") && $MY_VARIABLE
```
#### `only:changes`/`except:changes`
> `changes` policy [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/19232) in GitLab 11.4.
Using the `changes` keyword with `only` or `except` makes it possible to define if
a job should be created based on files modified by a Git push event.
This means the `only:changes` policy is useful for pipelines where:
- `$CI_PIPELINE_SOURCE == 'push'`
- `$CI_PIPELINE_SOURCE == 'merge_request_event'`
- `$CI_PIPELINE_SOURCE == 'external_pull_request_event'`
If there is no Git push event, such as for pipelines with
[sources other than the three above](../variables/predefined_variables.md),
`changes` can't determine if a given file is new or old, and will always
return true.
A basic example of using `only: changes`:
```yaml
docker build:
script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
only:
changes:
- Dockerfile
- docker/scripts/*
- dockerfiles/**/*
- more_scripts/*.{rb,py,sh}
```
In the scenario above, when pushing commits to an existing branch in GitLab,
it creates and triggers the `docker build` job, provided that one of the
commits contains changes to any of the following:
- The `Dockerfile` file.
- Any of the files inside `docker/scripts/` directory.
- Any of the files and subdirectories inside the `dockerfiles` directory.
- Any of the files with `rb`, `py`, `sh` extensions inside the `more_scripts` directory.
CAUTION: **Warning:**
If using `only:changes` with [only allow merge requests to be merged if the pipeline succeeds](../../user/project/merge_requests/merge_when_pipeline_succeeds.md#only-allow-merge-requests-to-be-merged-if-the-pipeline-succeeds),
undesired behavior could result if you don't [also use `only:merge_requests`](#using-onlychanges-with-pipelines-for-merge-requests).
You can also use glob patterns to match multiple files in either the root directory
of the repository, or in _any_ directory within the repository, but they must be wrapped
in double quotes or GitLab will fail to parse the `.gitlab-ci.yml`. For example:
```yaml
test:
script: npm run test
only:
changes:
- "*.json"
- "**/*.sql"
```
The following example will skip the `build` job if a change is detected in any file
in the root directory of the repository with a `.md` extension:
```yaml
build:
script: npm run build
except:
changes:
- "*.md"
```
CAUTION: **Warning:**
There are some points to be aware of when
[using this feature with new branches or tags *without* pipelines for merge requests](#using-onlychanges-without-pipelines-for-merge-requests).
CAUTION: **Warning:**
There are some points to be aware of when
[using this feature with scheduled pipelines](#using-onlychanges-with-scheduled-pipelines).
##### Using `only:changes` with pipelines for merge requests
With [pipelines for merge requests](../merge_request_pipelines/index.md),
it's possible to define a job to be created based on files modified
in a merge request.
In order to deduce the correct base SHA of the source branch, we recommend combining
this keyword with `only: [merge_requests]`. This way, file differences are correctly
calculated from any further commits, thus all changes in the merge requests are properly
tested in pipelines.
For example:
```yaml
docker build service one:
script: docker build -t my-service-one-image:$CI_COMMIT_REF_SLUG .
only:
refs:
- merge_requests
changes:
- Dockerfile
- service-one/**/*
```
In the scenario above, if a merge request is created or updated that changes
either files in `service-one` directory or the `Dockerfile`, GitLab creates
and triggers the `docker build service one` job.
Note that if [pipelines for merge requests](../merge_request_pipelines/index.md) is
combined with `only: [change]`, but `only: [merge_requests]` is omitted, there could be
unwanted behavior.
For example:
```yaml
docker build service one:
script: docker build -t my-service-one-image:$CI_COMMIT_REF_SLUG .
only:
changes:
- Dockerfile
- service-one/**/*
```
In the example above, a pipeline could fail due to changes to a file in `service-one/**/*`.
A later commit could then be pushed that does not include any changes to this file,
but includes changes to the `Dockerfile`, and this pipeline could pass because it's only
testing the changes to the `Dockerfile`. GitLab checks the **most recent pipeline**,
that **passed**, and will show the merge request as mergeable, despite the earlier
failed pipeline caused by a change that was not yet corrected.
With this configuration, care must be taken to check that the most recent pipeline
properly corrected any failures from previous pipelines.
##### Using `only:changes` without pipelines for merge requests
Without [pipelines for merge requests](../merge_request_pipelines/index.md), pipelines
run on branches or tags that don't have an explicit association with a merge request.
In this case, a previous SHA is used to calculate the diff, which is equivalent to `git diff HEAD~`.
This can result in some unexpected behavior, including:
- When pushing a new branch or a new tag to GitLab, the policy always evaluates to true.
- When pushing a new commit, the changed files are calculated using the previous commit
as the base SHA.
##### Using `only:changes` with scheduled pipelines
`only:changes` always evaluates as "true" in [Scheduled pipelines](../pipelines/schedules.md).
All files are considered to have "changed" when a scheduled pipeline
runs.
### `needs`
> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/47063) in GitLab 12.2.
> - In GitLab 12.3, maximum number of jobs in `needs` array raised from five to 50.
> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/30631) in GitLab 12.8, `needs: []` lets jobs start immediately.
The `needs:` keyword enables executing jobs out-of-order, allowing you to implement
a [directed acyclic graph](../directed_acyclic_graph/index.md) in your `.gitlab-ci.yml`.
This lets you run some jobs without waiting for other ones, disregarding stage ordering
so you can have multiple stages running concurrently.
Let's consider the following example:
```yaml
linux:build:
stage: build
mac:build:
stage: build
lint:
stage: test
needs: []
linux:rspec:
stage: test
needs: ["linux:build"]
linux:rubocop:
stage: test
needs: ["linux:build"]
mac:rspec:
stage: test
needs: ["mac:build"]
mac:rubocop:
stage: test
needs: ["mac:build"]
production:
stage: deploy
```
This example creates four paths of execution:
- Linter: the `lint` job will run immediately without waiting for the `build` stage to complete because it has no needs (`needs: []`).
- Linux path: the `linux:rspec` and `linux:rubocop` jobs will be run as soon
as the `linux:build` job finishes without waiting for `mac:build` to finish.
- macOS path: the `mac:rspec` and `mac:rubocop` jobs will be run as soon
as the `mac:build` job finishes, without waiting for `linux:build` to finish.
- The `production` job will be executed as soon as all previous jobs
finish; in this case: `linux:build`, `linux:rspec`, `linux:rubocop`,
`mac:build`, `mac:rspec`, `mac:rubocop`.
#### Requirements and limitations
- If `needs:` is set to point to a job that is not instantiated
because of `only/except` rules or otherwise does not exist, the
pipeline will be created with YAML error.
- The maximum number of jobs that a single job can need in the `needs:` array is limited:
- For GitLab.com, the limit is ten. For more information, see our
[infrastructure issue](https://gitlab.com/gitlab-com/gl-infra/infrastructure/-/issues/7541).
- For self-managed instances, the limit is: 50. This limit [can be changed](#changing-the-needs-job-limit-core-only).
- If `needs:` refers to a job that is marked as `parallel:`.
the current job will depend on all parallel jobs created.
- `needs:` is similar to `dependencies:` in that it needs to use jobs from prior stages,
meaning it's impossible to create circular dependencies. Depending on jobs in the
current stage is not possible either, but support [is planned](https://gitlab.com/gitlab-org/gitlab/-/issues/30632).
- Related to the above, stages must be explicitly defined for all jobs
that have the keyword `needs:` or are referred to by one.
##### Changing the `needs:` job limit **(CORE ONLY)**
The maximum number of jobs that can be defined within `needs:` defaults to 50.
A GitLab administrator with [access to the GitLab Rails console](../../administration/feature_flags.md)
can choose a custom limit. For example, to set the limit to 100:
```ruby
Plan.default.actual_limits.update!(ci_needs_size_limit: 100)
```
NOTE: **Note:**
To disable the ability to use DAG, set the limit to `0`.
#### Artifact downloads with `needs`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14311) in GitLab v12.6.
When using `needs`, artifact downloads are controlled with `artifacts: true` (default) or `artifacts: false`.
Since GitLab 12.6, you can't combine the [`dependencies`](#dependencies) keyword
with `needs` to control artifact downloads in jobs. `dependencies` is still valid
in jobs that do not use `needs`.
In the example below, the `rspec` job will download the `build_job` artifacts, while the
`rubocop` job won't:
```yaml
build_job:
stage: build
artifacts:
paths:
- binaries/
rspec:
stage: test
needs:
- job: build_job
artifacts: true
rubocop:
stage: test
needs:
- job: build_job
artifacts: false
```
Additionally, in the three syntax examples below, the `rspec` job will download the artifacts
from all three `build_jobs`, as `artifacts` is true for `build_job_1`, and will
**default** to true for both `build_job_2` and `build_job_3`.
```yaml
rspec:
needs:
- job: build_job_1
artifacts: true
- job: build_job_2
- build_job_3
```
#### Cross project artifact downloads with `needs` **(PREMIUM)**
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14311) in GitLab v12.7.
`needs` can be used to download artifacts from up to five jobs in pipelines on
[other refs in the same project](#artifact-downloads-between-pipelines-in-the-same-project),
or pipelines in different projects, groups and namespaces:
```yaml
build_job:
stage: build
script:
- ls -lhR
needs:
- project: namespace/group/project-name
job: build-1
ref: master
artifacts: true
```
`build_job` will download the artifacts from the latest successful `build-1` job
on the `master` branch in the `group/project-name` project. If the project is in the
same group or namespace, you can omit them from the `project:` key. For example,
`project: group/project-name` or `project: project-name`.
The user running the pipeline must have at least `reporter` access to the group or project, or the group/project must have public visibility.
##### Artifact downloads between pipelines in the same project
`needs` can be used to download artifacts from different pipelines in the current project
by setting the `project` keyword as the current project's name, and specifying a ref.
In the example below, `build_job` will download the artifacts for the latest successful
`build-1` job with the `other-ref` ref:
```yaml
build_job:
stage: build
script:
- ls -lhR
needs:
- project: group/same-project-name
job: build-1
ref: other-ref
artifacts: true
```
Environment variables support for `project:`, `job:`, and `ref` was [introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/202093)
in GitLab 13.3. This is under development, but it is ready for production use. It is deployed
behind the `ci_expand_names_for_cross_pipeline_artifacts` feature flag, which is **disabled by default**.
[GitLab administrators with access to the GitLab Rails console](../../administration/feature_flags.md)
can enable it for your instance.
For example:
```yaml
build_job:
stage: build
script:
- ls -lhR
needs:
- project: $CI_PROJECT_PATH
job: $DEPENDENCY_JOB_NAME
ref: $CI_COMMIT_BRANCH
artifacts: true
```
NOTE: **Note:**
Downloading artifacts from jobs that are run in [`parallel:`](#parallel) is not supported.
### `tags`
`tags` is used to select specific runners from the list of all runners that are
allowed to run this project.
During the registration of a runner, you can specify the runner's tags, for
example `ruby`, `postgres`, `development`.
`tags` allow you to run jobs with runners that have the specified tags
assigned to them:
```yaml
job:
tags:
- ruby
- postgres
```
The specification above, will make sure that `job` is built by a runner that
has both `ruby` AND `postgres` tags defined.
Tags are also a great way to run different jobs on different platforms, for
example, given an OS X runner with tag `osx` and Windows runner with tag
`windows`, the following jobs run on respective platforms:
```yaml
windows job:
stage:
- build
tags:
- windows
script:
- echo Hello, %USERNAME%!
osx job:
stage:
- build
tags:
- osx
script:
- echo "Hello, $USER!"
```
### `allow_failure`
`allow_failure` allows a job to fail without impacting the rest of the CI
suite.
The default value is `false`, except for [manual](#whenmanual) jobs using the
`when: manual` syntax, unless using [`rules:`](#rules) syntax, where all jobs
default to false, *including* `when: manual` jobs.
When enabled and the job fails, the job will show an orange warning in the UI.
However, the logical flow of the pipeline will consider the job a
success/passed, and is not blocked.
Assuming all other jobs are successful, the job's stage and its pipeline will
show the same orange warning. However, the associated commit will be marked
"passed", without warnings.
In the example below, `job1` and `job2` will run in parallel, but if `job1`
fails, it won't stop the next stage from running, since it's marked with
`allow_failure: true`:
```yaml
job1:
stage: test
script:
- execute_script_that_will_fail
allow_failure: true
job2:
stage: test
script:
- execute_script_that_will_succeed
job3:
stage: deploy
script:
- deploy_to_staging
```
### `when`
`when` is used to implement jobs that are run in case of failure or despite the
failure.
`when` can be set to one of the following values:
1. `on_success` - execute job only when all jobs from prior stages
succeed (or are considered succeeding because they are marked
`allow_failure`). This is the default.
1. `on_failure` - execute job only when at least one job from prior stages
fails.
1. `always` - execute job regardless of the status of jobs from prior stages.
1. `manual` - execute job manually (added in GitLab 8.10). Read about
[manual actions](#whenmanual) below.
1. `delayed` - execute job after a certain period (added in GitLab 11.14).
Read about [delayed actions](#whendelayed) below.
1. `never`:
- With [`rules`](#rules), don't execute job.
- With [`workflow:rules`](#workflowrules), don't run pipeline.
For example:
```yaml
stages:
- build
- cleanup_build
- test
- deploy
- cleanup
build_job:
stage: build
script:
- make build
cleanup_build_job:
stage: cleanup_build
script:
- cleanup build when failed
when: on_failure
test_job:
stage: test
script:
- make test
deploy_job:
stage: deploy
script:
- make deploy
when: manual
cleanup_job:
stage: cleanup
script:
- cleanup after jobs
when: always
```
The above script will:
1. Execute `cleanup_build_job` only when `build_job` fails.
1. Always execute `cleanup_job` as the last step in pipeline regardless of
success or failure.
1. Allow you to manually execute `deploy_job` from GitLab's UI.
#### `when:manual`
> - Introduced in GitLab 8.10.
> - Blocking manual actions were introduced in GitLab 9.0.
> - Protected actions were introduced in GitLab 9.2.
Manual actions are a special type of job that are not executed automatically,
they need to be explicitly started by a user. An example usage of manual actions
would be a deployment to a production environment. Manual actions can be started
from the pipeline, job, environment, and deployment views. Read more at the
[environments documentation](../environments/index.md#configuring-manual-deployments).
Manual actions can be either optional or blocking. Blocking manual actions will
block the execution of the pipeline at the stage this action is defined in. It's
possible to resume execution of the pipeline when someone executes a blocking
manual action by clicking a _play_ button.
When a pipeline is blocked, it won't be merged if Merge When Pipeline Succeeds
is set. Blocked pipelines also do have a special status, called _manual_.
When the `when:manual` syntax is used, manual actions are non-blocking by
default. If you want to make manual action blocking, it's necessary to add
`allow_failure: false` to the job's definition in `.gitlab-ci.yml`.
Optional manual actions have `allow_failure: true` set by default and their
Statuses don't contribute to the overall pipeline status. So, if a manual
action fails, the pipeline will eventually succeed.
NOTE: **Note:**
When using [`rules:`](#rules), `allow_failure` defaults to `false`, including for manual jobs.
Manual actions are considered to be write actions, so permissions for
[protected branches](../../user/project/protected_branches.md) are used when
a user wants to trigger an action. In other words, in order to trigger a manual
action assigned to a branch that the pipeline is running for, the user needs to
have the ability to merge to this branch. It's possible to use protected environments
to more strictly [protect manual deployments](#protecting-manual-jobs-premium) from being
run by unauthorized users.
NOTE: **Note:**
Using `when:manual` and `trigger` together results in the error `jobs:#{job-name} when
should be on_success, on_failure or always`, because `when:manual` prevents triggers
being used.
##### Protecting manual jobs **(PREMIUM)**
It's possible to use [protected environments](../environments/protected_environments.md)
to define a precise list of users authorized to run a manual job. By allowing only
users associated with a protected environment to trigger manual jobs, it's possible
to implement some special use cases, such as:
- More precisely limiting who can deploy to an environment.
- Enabling a pipeline to be blocked until an approved user "approves" it.
To do this, you must:
1. Add an `environment` to the job. For example:
```yaml
deploy_prod:
stage: deploy
script:
- echo "Deploy to production server"
environment:
name: production
url: https://example.com
when: manual
only:
- master
```
1. In the [protected environments settings](../environments/protected_environments.md#protecting-environments),
select the environment (`production` in the example above) and add the users, roles or groups
that are authorized to trigger the manual job to the **Allowed to Deploy** list. Only those in
this list will be able to trigger this manual job, as well as GitLab administrators
who are always able to use protected environments.
Additionally, if a manual job is defined as blocking by adding `allow_failure: false`,
the next stages of the pipeline won't run until the manual job is triggered. This
can be used as a way to have a defined list of users allowed to "approve" later pipeline
stages by triggering the blocking manual job.
#### `when:delayed`
> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/51352) in GitLab 11.4.
Delayed job are for executing scripts after a certain period.
This is useful if you want to avoid jobs entering `pending` state immediately.
You can set the period with `start_in` key. The value of `start_in` key is an elapsed time in seconds, unless a unit is
provided. `start_in` key must be less than or equal to one week. Examples of valid values include:
- `'5'`
- `10 seconds`
- `30 minutes`
- `1 day`
- `1 week`
When there is a delayed job in a stage, the pipeline won't progress until the delayed job has finished.
This means this keyword can also be used for inserting delays between different stages.
The timer of a delayed job starts immediately after the previous stage has completed.
Similar to other types of jobs, a delayed job's timer won't start unless the previous stage passed.
The following example creates a job named `timed rollout 10%` that is executed 30 minutes after the previous stage has completed:
```yaml
timed rollout 10%:
stage: deploy
script: echo 'Rolling out 10% ...'
when: delayed
start_in: 30 minutes
```
You can stop the active timer of a delayed job by clicking the **{time-out}** (**Unschedule**) button.
This job will never be executed in the future unless you execute the job manually.
To start a delayed job immediately, click the **Play** button.
Soon GitLab Runner picks up and starts the job.
### `environment`
> - Introduced in GitLab 8.9.
> - You can read more about environments and find more examples in the
> [documentation about environments](../environments/index.md).
`environment` is used to define that a job deploys to a specific environment.
If `environment` is specified and no environment under that name exists, a new
one will be created automatically.
In its simplest form, the `environment` keyword can be defined like:
```yaml
deploy to production:
stage: deploy
script: git push production HEAD:master
environment: production
```
In the above example, the `deploy to production` job will be marked as doing a
deployment to the `production` environment.
#### `environment:name`
> - Introduced in GitLab 8.11.
> - Before GitLab 8.11, the name of an environment could be defined as a string like
> `environment: production`. The recommended way now is to define it under the
> `name` keyword.
> - The `name` parameter can use any of the defined CI variables,
> including predefined, secure variables and `.gitlab-ci.yml` [`variables`](#variables).
> You however can't use variables defined under `script`.
The `environment` name can contain:
- letters
- digits
- spaces
- `-`
- `_`
- `/`
- `$`
- `{`
- `}`
Common names are `qa`, `staging`, and `production`, but you can use whatever
name works with your workflow.
Instead of defining the name of the environment right after the `environment`
keyword, it's also possible to define it as a separate value. For that, use
the `name` keyword under `environment`:
```yaml
deploy to production:
stage: deploy
script: git push production HEAD:master
environment:
name: production
```
#### `environment:url`
> - Introduced in GitLab 8.11.
> - Before GitLab 8.11, the URL could be added only in GitLab's UI. The
> recommended way now is to define it in `.gitlab-ci.yml`.
> - The `url` parameter can use any of the defined CI variables,
> including predefined, secure variables and `.gitlab-ci.yml` [`variables`](#variables).
> You however can't use variables defined under `script`.
This optional value exposes buttons that take you to the defined URL
In this example, if the job finishes successfully, it creates buttons
in the merge requests and in the environments/deployments pages that point
to `https://prod.example.com`.
```yaml
deploy to production:
stage: deploy
script: git push production HEAD:master
environment:
name: production
url: https://prod.example.com
```
#### `environment:on_stop`
> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/22191) in GitLab 8.13.
> - Starting with GitLab 8.14, when you have an environment that has a stop action
> defined, GitLab will automatically trigger a stop action when the associated
> branch is deleted.
Closing (stopping) environments can be achieved with the `on_stop` keyword defined under
`environment`. It declares a different job that runs in order to close
the environment.
Read the `environment:action` section for an example.
#### `environment:action`
> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/22191) in GitLab 8.13.
The `action` keyword can be used to specify jobs that prepare, start, or stop environments.
| **Value** | **Description** |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| start | Default value. Indicates that job starts the environment. Deployment will be created after job starts. |
| prepare | Indicates that job is only preparing the environment. Does not affect deployments. [Read more about environments](../environments/index.md#prepare-an-environment) |
| stop | Indicates that job stops deployment. See the example below. |
Take for instance:
```yaml
review_app:
stage: deploy
script: make deploy-app
environment:
name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com
on_stop: stop_review_app
stop_review_app:
stage: deploy
variables:
GIT_STRATEGY: none
script: make delete-app
when: manual
environment:
name: review/$CI_COMMIT_REF_NAME
action: stop
```
In the above example we set up the `review_app` job to deploy to the `review`
environment, and we also defined a new `stop_review_app` job under `on_stop`.
Once the `review_app` job is successfully finished, it will trigger the
`stop_review_app` job based on what is defined under `when`. In this case we
set it up to `manual` so it will need a [manual action](#whenmanual) via
GitLab's web interface in order to run.
Also in the example, `GIT_STRATEGY` is set to `none` so that GitLab Runner wont
try to check out the code after the branch is deleted when the `stop_review_app`
job is [automatically triggered](../environments/index.md#automatically-stopping-an-environment).
NOTE: **Note:**
The above example overwrites global variables. If your stop environment job depends
on global variables, you can use [anchor variables](#yaml-anchors-for-variables) when setting the `GIT_STRATEGY`
to change it without overriding the global variables.
The `stop_review_app` job is **required** to have the following keywords defined:
- `when` - [reference](#when)
- `environment:name`
- `environment:action`
Additionally, both jobs should have matching [`rules`](../yaml/README.md#onlyexcept-basic)
or [`only/except`](../yaml/README.md#onlyexcept-basic) configuration. In the example
above, if the configuration is not identical, the `stop_review_app` job might not be
included in all pipelines that include the `review_app` job, and it will not be
possible to trigger the `action: stop` to stop the environment automatically.
#### `environment:auto_stop_in`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/20956) in GitLab 12.8.
The `auto_stop_in` keyword is for specifying life period of the environment,
that when expired, GitLab automatically stops them.
For example,
```yaml
review_app:
script: deploy-review-app
environment:
name: review/$CI_COMMIT_REF_NAME
auto_stop_in: 1 day
```
When `review_app` job is executed and a review app is created, a life period of
the environment is set to `1 day`.
For more information, see
[the environments auto-stop documentation](../environments/index.md#environments-auto-stop)
#### `environment:kubernetes`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/27630) in GitLab 12.6.
The `kubernetes` block is used to configure deployments to a
[Kubernetes cluster](../../user/project/clusters/index.md) that is associated with your project.
For example:
```yaml
deploy:
stage: deploy
script: make deploy-app
environment:
name: production
kubernetes:
namespace: production
```
This will set up the `deploy` job to deploy to the `production`
environment, using the `production`
[Kubernetes namespace](https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/).
For more information, see
[Available settings for `kubernetes`](../environments/index.md#configuring-kubernetes-deployments).
NOTE: **Note:**
Kubernetes configuration is not supported for Kubernetes clusters
that are [managed by GitLab](../../user/project/clusters/index.md#gitlab-managed-clusters).
To follow progress on support for GitLab-managed clusters, see the
[relevant issue](https://gitlab.com/gitlab-org/gitlab/-/issues/38054).
#### Dynamic environments
> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/21971) in GitLab 8.12 and GitLab Runner 1.6.
> - The `$CI_ENVIRONMENT_SLUG` was [introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/22864) in GitLab 8.15.
> - The `name` and `url` parameters can use any of the defined CI variables,
> including predefined, secure variables and `.gitlab-ci.yml` [`variables`](#variables).
> You however can't use variables defined under `script`.
For example:
```yaml
deploy as review app:
stage: deploy
script: make deploy
environment:
name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com/
```
The `deploy as review app` job will be marked as deployment to dynamically
create the `review/$CI_COMMIT_REF_NAME` environment, where `$CI_COMMIT_REF_NAME`
is an [environment variable](../variables/README.md) set by the runner. The
`$CI_ENVIRONMENT_SLUG` variable is based on the environment name, but suitable
for inclusion in URLs. In this case, if the `deploy as review app` job was run
in a branch named `pow`, this environment would be accessible with an URL like
`https://review-pow.example.com/`.
This implies that the underlying server that hosts the application
is properly configured.
The common use case is to create dynamic environments for branches and use them
as Review Apps. You can see a simple example using Review Apps at
<https://gitlab.com/gitlab-examples/review-apps-nginx/>.
### `cache`
> - Introduced in GitLab Runner v0.7.0.
> - `cache` can be set globally and per-job.
> - From GitLab 9.0, caching is enabled and shared between pipelines and jobs
> by default.
> - From GitLab 9.2, caches are restored before [artifacts](#artifacts).
TIP: **Learn more:**
Read how caching works and find out some good practices in the
[caching dependencies documentation](../caching/index.md).
`cache` is used to specify a list of files and directories that should be
cached between jobs. You can only use paths that are within the local working
copy.
If `cache` is defined outside the scope of jobs, it means it's set
globally and all jobs will use that definition.
#### `cache:paths`
Use the `paths` directive to choose which files or directories to cache. Paths
are relative to the project directory (`$CI_PROJECT_DIR`) and can't directly link outside it.
Wildcards can be used that follow the [glob](https://en.wikipedia.org/wiki/Glob_(programming))
patterns and:
- In [GitLab Runner 13.0](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/2620) and later,
[`doublestar.Glob`](https://pkg.go.dev/github.com/bmatcuk/doublestar@v1.2.2?tab=doc#Match).
- In GitLab Runner 12.10 and earlier,
[`filepath.Match`](https://pkg.go.dev/path/filepath/#Match).
Cache all files in `binaries` that end in `.apk` and the `.config` file:
```yaml
rspec:
script: test
cache:
paths:
- binaries/*.apk
- .config
```
Locally defined cache overrides globally defined options. The following `rspec`
job will cache only `binaries/`:
```yaml
cache:
paths:
- my/files
rspec:
script: test
cache:
key: rspec
paths:
- binaries/
```
Note that since cache is shared between jobs, if you're using different
paths for different jobs, you should also set a different **cache:key**
otherwise cache content can be overwritten.
#### `cache:key`
> Introduced in GitLab Runner v1.0.0.
Since the cache is shared between jobs, if you're using different
paths for different jobs, you should also set a different `cache:key`
otherwise cache content can be overwritten.
The `key` directive allows you to define the affinity of caching between jobs,
allowing to have a single cache for all jobs, cache per-job, cache per-branch
or any other way that fits your workflow. This way, you can fine tune caching,
allowing you to cache data between different jobs or even different branches.
The `cache:key` variable can use any of the
[predefined variables](../variables/README.md). The default key, if not
set, is just literal `default`, which means everything is shared between
pipelines and jobs by default, starting from GitLab 9.0.
NOTE: **Note:**
The `cache:key` variable can't contain the `/` character, or the equivalent
URI-encoded `%2F`; a value made only of dots (`.`, `%2E`) is also forbidden.
For example, to enable per-branch caching:
```yaml
cache:
key: "$CI_COMMIT_REF_SLUG"
paths:
- binaries/
```
If you use **Windows Batch** to run your shell scripts you need to replace
`$` with `%`:
```yaml
cache:
key: "%CI_COMMIT_REF_SLUG%"
paths:
- binaries/
```
##### `cache:key:files`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/18986) in GitLab v12.5.
The `cache:key:files` keyword extends the `cache:key` functionality by making it easier
to reuse some caches, and rebuild them less often, which will speed up subsequent pipeline
runs.
When you include `cache:key:files`, you must also list the project files that will be used to generate the key, up to a maximum of two files.
The cache `key` will be a SHA checksum computed from the most recent commits (up to two, if two files are listed)
that changed the given files. If neither file was changed in any commits,
the fallback key will be `default`.
```yaml
cache:
key:
files:
- Gemfile.lock
- package.json
paths:
- vendor/ruby
- node_modules
```
In this example we're creating a cache for Ruby and Node.js dependencies that
is tied to current versions of the `Gemfile.lock` and `package.json` files. Whenever one of
these files changes, a new cache key is computed and a new cache is created. Any future
job runs using the same `Gemfile.lock` and `package.json` with `cache:key:files` will
use the new cache, instead of rebuilding the dependencies.
##### `cache:key:prefix`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/18986) in GitLab v12.5.
The `prefix` parameter adds extra functionality to `key:files` by allowing the key to
be composed of the given `prefix` combined with the SHA computed for `cache:key:files`.
For example, adding a `prefix` of `test`, will cause keys to look like: `test-feef9576d21ee9b6a32e30c5c79d0a0ceb68d1e5`.
If neither file was changed in any commits, the prefix is added to `default`, so the
key in the example would be `test-default`.
Like `cache:key`, `prefix` can use any of the [predefined variables](../variables/README.md),
but the following are not allowed:
- the `/` character (or the equivalent URI-encoded `%2F`)
- a value made only of `.` (or the equivalent URI-encoded `%2E`)
```yaml
cache:
key:
files:
- Gemfile.lock
prefix: ${CI_JOB_NAME}
paths:
- vendor/ruby
rspec:
script:
- bundle exec rspec
```
For example, adding a `prefix` of `$CI_JOB_NAME` will
cause the key to look like: `rspec-feef9576d21ee9b6a32e30c5c79d0a0ceb68d1e5` and
the job cache is shared across different branches. If a branch changes
`Gemfile.lock`, that branch will have a new SHA checksum for `cache:key:files`. A new cache key
will be generated, and a new cache will be created for that key.
If `Gemfile.lock` is not found, the prefix is added to
`default`, so the key in the example would be `rspec-default`.
#### `cache:untracked`
Set `untracked: true` to cache all files that are untracked in your Git
repository:
```yaml
rspec:
script: test
cache:
untracked: true
```
Cache all Git untracked files and files in `binaries`:
```yaml
rspec:
script: test
cache:
untracked: true
paths:
- binaries/
```
#### `cache:policy`
> Introduced in GitLab 9.4.
The default behavior of a caching job is to download the files at the start of
execution, and to re-upload them at the end. This allows any changes made by the
job to be persisted for future runs, and is known as the `pull-push` cache
policy.
If you know the job does not alter the cached files, you can skip the upload step
by setting `policy: pull` in the job specification. Typically, this would be
twinned with an ordinary cache job at an earlier stage to ensure the cache
is updated from time to time:
```yaml
stages:
- setup
- test
prepare:
stage: setup
cache:
key: gems
paths:
- vendor/bundle
script:
- bundle install --deployment
rspec:
stage: test
cache:
key: gems
paths:
- vendor/bundle
policy: pull
script:
- bundle exec rspec ...
```
This helps to speed up job execution and reduce load on the cache server,
especially when you have a large number of cache-using jobs executing in
parallel.
Additionally, if you have a job that unconditionally recreates the cache without
reference to its previous contents, you can use `policy: push` in that job to
skip the download step.
### `artifacts`
> - Introduced in GitLab Runner v0.7.0 for non-Windows platforms.
> - Windows support was added in GitLab Runner v.1.0.0.
> - From GitLab 9.2, caches are restored before artifacts.
> - Not all executors are [supported](https://docs.gitlab.com/runner/executors/#compatibility-chart).
> - Job artifacts are only collected for successful jobs by default.
`artifacts` is used to specify a list of files and directories that are
attached to the job when it [succeeds, fails, or always](#artifactswhen).
The artifacts will be sent to GitLab after the job finishes and will
be available for download in the GitLab UI.
[Read more about artifacts](../pipelines/job_artifacts.md).
#### `artifacts:paths`
Paths are relative to the project directory (`$CI_PROJECT_DIR`) and can't directly
link outside it. Wildcards can be used that follow the [glob](https://en.wikipedia.org/wiki/Glob_(programming))
patterns and:
- In [GitLab Runner 13.0](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/2620) and later,
[`doublestar.Glob`](https://pkg.go.dev/github.com/bmatcuk/doublestar@v1.2.2?tab=doc#Match).
- In GitLab Runner 12.10 and earlier,
[`filepath.Match`](https://pkg.go.dev/path/filepath/#Match).
To restrict which jobs a specific job will fetch artifacts from, see [dependencies](#dependencies).
Send all files in `binaries` and `.config`:
```yaml
artifacts:
paths:
- binaries/
- .config
```
To disable artifact passing, define the job with empty [dependencies](#dependencies):
```yaml
job:
stage: build
script: make build
dependencies: []
```
You may want to create artifacts only for tagged releases to avoid filling the
build server storage with temporary build artifacts.
Create artifacts only for tags (`default-job` won't create artifacts):
```yaml
default-job:
script:
- mvn test -U
except:
- tags
release-job:
script:
- mvn package -U
artifacts:
paths:
- target/*.war
only:
- tags
```
You can use wildcards for directories too. For example, if you want to get all the files inside the directories that end with `xyz`:
```yaml
job:
artifacts:
paths:
- path/*xyz/*
```
#### `artifacts:exclude`
> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15122) in GitLab 13.1
> - Requires GitLab Runner 13.1
`exclude` makes it possible to prevent files from being added to an artifacts
archive.
Similar to [`artifacts:paths`](#artifactspaths), `exclude` paths are relative
to the project directory. Wildcards can be used that follow the
[glob](https://en.wikipedia.org/wiki/Glob_(programming)) patterns and
[`filepath.Match`](https://golang.org/pkg/path/filepath/#Match).
For example, to store all files in `binaries/`, but not `*.o` files located in
subdirectories of `binaries/`:
```yaml
artifacts:
paths:
- binaries/
exclude:
- binaries/**/*.o
```
Files matched by [`artifacts:untracked`](#artifactsuntracked) can be excluded using
`artifacts:exclude` too.
#### `artifacts:expose_as`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15018) in GitLab 12.5.
The `expose_as` keyword can be used to expose [job artifacts](../pipelines/job_artifacts.md)
in the [merge request](../../user/project/merge_requests/index.md) UI.
For example, to match a single file:
```yaml
test:
script: [ "echo 'test' > file.txt" ]
artifacts:
expose_as: 'artifact 1'
paths: ['file.txt']
```
With this configuration, GitLab will add a link **artifact 1** to the relevant merge request
that points to `file1.txt`.
An example that will match an entire directory:
```yaml
test:
script: [ "mkdir test && echo 'test' > test/file.txt" ]
artifacts:
expose_as: 'artifact 1'
paths: ['test/']
```
Note the following:
- Artifacts do not display in the merge request UI when using variables to define the `artifacts:paths`.
- A maximum of 10 job artifacts per merge request can be exposed.
- Glob patterns are unsupported.
- If a directory is specified, the link will be to the job [artifacts browser](../pipelines/job_artifacts.md#browsing-artifacts) if there is more than
one file in the directory.
- For exposed single file artifacts with `.html`, `.htm`, `.txt`, `.json`, `.xml`,
and `.log` extensions, if [GitLab Pages](../../administration/pages/index.md) is:
- Enabled, GitLab will automatically render the artifact.
- Not enabled, you will see the file in the artifacts browser.
#### `artifacts:name`
> Introduced in GitLab 8.6 and GitLab Runner v1.1.0.
Use the `name` directive to define the name of the created artifacts
archive. You can specify a unique name for every archive, which can be
useful when you want to download the archive from GitLab. The `artifacts:name`
variable can make use of any of the [predefined variables](../variables/README.md).
The default name is `artifacts`, which becomes `artifacts.zip` when you download it.
NOTE: **Note:**
If your branch-name contains forward slashes
(for example `feature/my-feature`) it's advised to use `$CI_COMMIT_REF_SLUG`
instead of `$CI_COMMIT_REF_NAME` for proper naming of the artifact.
To create an archive with a name of the current job:
```yaml
job:
artifacts:
name: "$CI_JOB_NAME"
paths:
- binaries/
```
To create an archive with a name of the current branch or tag including only
the binaries directory:
```yaml
job:
artifacts:
name: "$CI_COMMIT_REF_NAME"
paths:
- binaries/
```
To create an archive with a name of the current job and the current branch or
tag including only the binaries directory:
```yaml
job:
artifacts:
name: "$CI_JOB_NAME-$CI_COMMIT_REF_NAME"
paths:
- binaries/
```
To create an archive with a name of the current [stage](#stages) and branch name:
```yaml
job:
artifacts:
name: "$CI_JOB_STAGE-$CI_COMMIT_REF_NAME"
paths:
- binaries/
```
---
If you use **Windows Batch** to run your shell scripts you need to replace
`$` with `%`:
```yaml
job:
artifacts:
name: "%CI_JOB_STAGE%-%CI_COMMIT_REF_NAME%"
paths:
- binaries/
```
If you use **Windows PowerShell** to run your shell scripts you need to replace
`$` with `$env:`:
```yaml
job:
artifacts:
name: "$env:CI_JOB_STAGE-$env:CI_COMMIT_REF_NAME"
paths:
- binaries/
```
#### `artifacts:untracked`
`artifacts:untracked` is used to add all Git untracked files as artifacts (along
to the paths defined in `artifacts:paths`).
NOTE: **Note:**
`artifacts:untracked` ignores configuration in the repository's `.gitignore` file.
Send all Git untracked files:
```yaml
artifacts:
untracked: true
```
Send all Git untracked files and files in `binaries`:
```yaml
artifacts:
untracked: true
paths:
- binaries/
```
Send all untracked files but [exclude](#artifactsexclude) `*.txt`:
```yaml
artifacts:
untracked: true
exclude:
- *.txt
```
#### `artifacts:when`
> Introduced in GitLab 8.9 and GitLab Runner v1.3.0.
`artifacts:when` is used to upload artifacts on job failure or despite the
failure.
`artifacts:when` can be set to one of the following values:
1. `on_success` - upload artifacts only when the job succeeds. This is the default.
1. `on_failure` - upload artifacts only when the job fails.
1. `always` - upload artifacts regardless of the job status.
To upload artifacts only when job fails:
```yaml
job:
artifacts:
when: on_failure
```
#### `artifacts:expire_in`
> Introduced in GitLab 8.9 and GitLab Runner v1.3.0.
`expire_in` allows you to specify how long artifacts should live before they
expire and are therefore deleted, counting from the time they are uploaded and
stored on GitLab. If the expiry time is not defined, it defaults to the
[instance wide setting](../../user/admin_area/settings/continuous_integration.md#default-artifacts-expiration-core-only)
(30 days by default).
To override the expiration date and protect artifacts from being automatically deleted:
- Use the **Keep** button on the job page.
- Set the value of `expire_in` to `never`. [Available](https://gitlab.com/gitlab-org/gitlab/-/issues/22761)
in GitLab 13.3 and later.
After their expiry, artifacts are deleted hourly by default (via a cron job),
and are not accessible anymore.
The value of `expire_in` is an elapsed time in seconds, unless a unit is
provided. Examples of valid values:
- `42`
- `3 mins 4 sec`
- `2 hrs 20 min`
- `2h20min`
- `6 mos 1 day`
- `47 yrs 6 mos and 4d`
- `3 weeks and 2 days`
- `never`
To expire artifacts 1 week after being uploaded:
```yaml
job:
artifacts:
expire_in: 1 week
```
NOTE: **Note:**
Since [GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/16267), the latest
artifacts for refs can be locked against deletion, and kept regardless of the expiry time. This feature is disabled
by default and is not ready for production use. It can be enabled for testing by
enabling the `:keep_latest_artifact_for_ref` and `:destroy_only_unlocked_expired_artifacts` [feature flags](../../administration/feature_flags.md).
#### `artifacts:reports`
The [`artifacts:reports` keyword](../pipelines/job_artifacts.md#artifactsreports)
is used for collecting test reports, code quality reports, and security reports from jobs.
It also exposes these reports in GitLab's UI (merge requests, pipeline views, and security dashboards).
These are the available report types:
| Parameter | Description |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------|
| [`artifacts:reports:cobertura`](../pipelines/job_artifacts.md#artifactsreportscobertura) | The `cobertura` report collects Cobertura coverage XML files. |
| [`artifacts:reports:codequality`](../pipelines/job_artifacts.md#artifactsreportscodequality) | The `codequality` report collects CodeQuality issues. |
| [`artifacts:reports:container_scanning`](../pipelines/job_artifacts.md#artifactsreportscontainer_scanning-ultimate) **(ULTIMATE)** | The `container_scanning` report collects Container Scanning vulnerabilities. |
| [`artifacts:reports:dast`](../pipelines/job_artifacts.md#artifactsreportsdast-ultimate) **(ULTIMATE)** | The `dast` report collects Dynamic Application Security Testing vulnerabilities. |
| [`artifacts:reports:dependency_scanning`](../pipelines/job_artifacts.md#artifactsreportsdependency_scanning-ultimate) **(ULTIMATE)** | The `dependency_scanning` report collects Dependency Scanning vulnerabilities. |
| [`artifacts:reports:dotenv`](../pipelines/job_artifacts.md#artifactsreportsdotenv) | The `dotenv` report collects a set of environment variables. |
| [`artifacts:reports:junit`](../pipelines/job_artifacts.md#artifactsreportsjunit) | The `junit` report collects JUnit XML files. |
| [`artifacts:reports:license_management`](../pipelines/job_artifacts.md#artifactsreportslicense_management-ultimate) **(ULTIMATE)** | The `license_management` report collects Licenses (*removed from GitLab 13.0*). |
| [`artifacts:reports:license_scanning`](../pipelines/job_artifacts.md#artifactsreportslicense_scanning-ultimate) **(ULTIMATE)** | The `license_scanning` report collects Licenses. |
| [`artifacts:reports:load_performance`](../pipelines/job_artifacts.md#artifactsreportsload_performance-premium) **(PREMIUM)** | The `load_performance` report collects load performance metrics. |
| [`artifacts:reports:metrics`](../pipelines/job_artifacts.md#artifactsreportsmetrics-premium) **(PREMIUM)** | The `metrics` report collects Metrics. |
| [`artifacts:reports:performance`](../pipelines/job_artifacts.md#artifactsreportsperformance-premium) **(PREMIUM)** | The `performance` report collects Browser Performance metrics. |
| [`artifacts:reports:sast`](../pipelines/job_artifacts.md#artifactsreportssast-ultimate) **(ULTIMATE)** | The `sast` report collects Static Application Security Testing vulnerabilities. |
| [`artifacts:reports:terraform`](../pipelines/job_artifacts.md#artifactsreportsterraform) | The `terraform` report collects Terraform `tfplan.json` files. |
#### `dependencies`
> Introduced in GitLab 8.6 and GitLab Runner v1.1.1.
By default, all [`artifacts`](#artifacts) from all previous [stages](#stages)
are passed, but you can use the `dependencies` parameter to define a limited
list of jobs (or no jobs) to fetch artifacts from.
To use this feature, define `dependencies` in context of the job and pass
a list of all previous jobs the artifacts should be downloaded from.
You can only define jobs from stages that are executed before the current one.
An error will be shown if you define jobs from the current stage or next ones.
Defining an empty array will skip downloading any artifacts for that job.
The status of the previous job is not considered when using `dependencies`, so
if it failed or it's a manual job that was not run, no error occurs.
In the following example, we define two jobs with artifacts, `build:osx` and
`build:linux`. When the `test:osx` is executed, the artifacts from `build:osx`
will be downloaded and extracted in the context of the build. The same happens
for `test:linux` and artifacts from `build:linux`.
The job `deploy` will download artifacts from all previous jobs because of
the [stage](#stages) precedence:
```yaml
build:osx:
stage: build
script: make build:osx
artifacts:
paths:
- binaries/
build:linux:
stage: build
script: make build:linux
artifacts:
paths:
- binaries/
test:osx:
stage: test
script: make test:osx
dependencies:
- build:osx
test:linux:
stage: test
script: make test:linux
dependencies:
- build:linux
deploy:
stage: deploy
script: make deploy
```
##### When a dependent job will fail
> Introduced in GitLab 10.3.
If the artifacts of the job that is set as a dependency have been
[expired](#artifactsexpire_in) or
[erased](../pipelines/job_artifacts.md#erasing-artifacts), then
the dependent job will fail.
NOTE: **Note:**
You can ask your administrator to
[flip this switch](../../administration/job_artifacts.md#validation-for-dependencies)
and bring back the old behavior.
### `coverage`
> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/20428) in GitLab 8.17.
`coverage` allows you to configure how code coverage will be extracted from the
job output.
Regular expressions are the only valid kind of value expected here. So, using
surrounding `/` is mandatory in order to consistently and explicitly represent
a regular expression string. You must escape special characters if you want to
match them literally.
A simple example:
```yaml
job1:
script: rspec
coverage: '/Code coverage: \d+\.\d+/'
```
### `retry`
> - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/3442) in GitLab 9.5.
> - [Behavior expanded](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/3515) in GitLab 11.5 to control which failures to retry on.
`retry` allows you to configure how many times a job is going to be retried in
case of a failure.
When a job fails and has `retry` configured, it's going to be processed again
up to the amount of times specified by the `retry` keyword.
If `retry` is set to 2, and a job succeeds in a second run (first retry), it won't be retried
again. `retry` value has to be a positive integer, equal or larger than 0, but
lower or equal to 2 (two retries maximum, three runs in total).
A simple example to retry in all failure cases:
```yaml
test:
script: rspec
retry: 2
```
By default, a job will be retried on all failure cases. To have a better control
over which failures to retry, `retry` can be a hash with the following keys:
- `max`: The maximum number of retries.
- `when`: The failure cases to retry.
To retry only runner system failures at maximum two times:
```yaml
test:
script: rspec
retry:
max: 2
when: runner_system_failure
```
If there is another failure, other than a runner system failure, the job will
not be retried.
To retry on multiple failure cases, `when` can also be an array of failures:
```yaml
test:
script: rspec
retry:
max: 2
when:
- runner_system_failure
- stuck_or_timeout_failure
```
Possible values for `when` are:
<!--
Please make sure to update `RETRY_WHEN_IN_DOCUMENTATION` array in
`spec/lib/gitlab/ci/config/entry/retry_spec.rb` if you change any of
the documented values below. The test there makes sure that all documented
values are really valid as a configuration option and therefore should always
stay in sync with this documentation.
-->
- `always`: Retry on any failure (default).
- `unknown_failure`: Retry when the failure reason is unknown.
- `script_failure`: Retry when the script failed.
- `api_failure`: Retry on API failure.
- `stuck_or_timeout_failure`: Retry when the job got stuck or timed out.
- `runner_system_failure`: Retry if there was a runner system failure (for example, job setup failed).
- `missing_dependency_failure`: Retry if a dependency was missing.
- `runner_unsupported`: Retry if the runner was unsupported.
- `stale_schedule`: Retry if a delayed job could not be executed.
- `job_execution_timeout`: Retry if the script exceeded the maximum execution time set for the job.
- `archived_failure`: Retry if the job is archived and can't be run.
- `unmet_prerequisites`: Retry if the job failed to complete prerequisite tasks.
- `scheduler_failure`: Retry if the scheduler failed to assign the job to a runner.
- `data_integrity_failure`: Retry if there was a structural integrity problem detected.
You can specify the number of [retry attempts for certain stages of job execution](#job-stages-attempts) using variables.
### `timeout`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/14887) in GitLab 12.3.
`timeout` allows you to configure a timeout for a specific job. For example:
```yaml
build:
script: build.sh
timeout: 3 hours 30 minutes
test:
script: rspec
timeout: 3h 30m
```
The job-level timeout can exceed the
[project-level timeout](../pipelines/settings.md#timeout) but can't
exceed the runner-specific timeout.
### `parallel`
> [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/21480) in GitLab 11.5.
`parallel` allows you to configure how many instances of a job to run in
parallel. This value has to be greater than or equal to two (2) and less than or equal to 50.
This creates N instances of the same job that run in parallel. They are named
sequentially from `job_name 1/N` to `job_name N/N`.
For every job, `CI_NODE_INDEX` and `CI_NODE_TOTAL` [environment variables](../variables/README.md#predefined-environment-variables) are set.
Marking a job to be run in parallel requires adding `parallel` to your configuration
file. For example:
```yaml
test:
script: rspec
parallel: 5
```
TIP: **Tip:**
Parallelize tests suites across parallel jobs.
Different languages have different tools to facilitate this.
A simple example using [Semaphore Test Boosters](https://github.com/renderedtext/test-boosters) and RSpec to run some Ruby tests:
```ruby
# Gemfile
source 'https://rubygems.org'
gem 'rspec'
gem 'semaphore_test_boosters'
```
```yaml
test:
parallel: 3
script:
- bundle
- bundle exec rspec_booster --job $CI_NODE_INDEX/$CI_NODE_TOTAL
```
CAUTION: **Caution:**
Please be aware that semaphore_test_boosters reports usages statistics to the author.
You can then navigate to the **Jobs** tab of a new pipeline build and see your RSpec
job split into three separate jobs.
#### Parallel `matrix` jobs
> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15356) in GitLab 13.3.
`matrix:` allows you to configure different variables for jobs that are running in parallel.
There can be from 2 to 50 jobs.
Every job gets the same `CI_NODE_TOTAL` [environment variable](../variables/README.md#predefined-environment-variables) value, and a unique `CI_NODE_INDEX` value.
```yaml
deploystacks:
stage: deploy
script:
- bin/deploy
parallel:
matrix:
- PROVIDER: aws
STACK:
- monitoring
- app1
- app2
- PROVIDER: ovh
STACK: [monitoring, backup, app]
- PROVIDER: [gcp, vultr]
STACK: [data, processing]
```
This generates 10 parallel `deploystacks` jobs, each with different values for `PROVIDER` and `STACK`:
```plaintext
deploystacks 1/10 with PROVIDER=aws and STACK=monitoring
deploystacks 2/10 with PROVIDER=aws and STACK=app1
deploystacks 3/10 with PROVIDER=aws and STACK=app2
deploystacks 4/10 with PROVIDER=ovh and STACK=monitoring
deploystacks 5/10 with PROVIDER=ovh and STACK=backup
deploystacks 6/10 with PROVIDER=ovh and STACK=app
deploystacks 7/10 with PROVIDER=gcp and STACK=data
deploystacks 8/10 with PROVIDER=gcp and STACK=processing
deploystacks 9/10 with PROVIDER=vultr and STACK=data
deploystacks 10/10 with PROVIDER=vultr and STACK=processing
```
### `trigger`
> - [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/8997) in [GitLab Premium](https://about.gitlab.com/pricing/) 11.8.
> - [Moved](https://gitlab.com/gitlab-org/gitlab/-/issues/199224) to GitLab Core in 12.8.
`trigger` allows you to define downstream pipeline trigger. When a job created
from `trigger` definition is started by GitLab, a downstream pipeline gets
created.
This keyword allows the creation of two different types of downstream pipelines:
- [Multi-project pipelines](../multi_project_pipelines.md#creating-multi-project-pipelines-from-gitlab-ciyml)
- [Child pipelines](../parent_child_pipelines.md)
[Since GitLab 13.2](https://gitlab.com/gitlab-org/gitlab/-/issues/197140/), you can
see which job triggered a downstream pipeline by hovering your mouse cursor over
the downstream pipeline job in the [pipeline graph](../pipelines/index.md#visualize-pipelines).
NOTE: **Note:**
Using a `trigger` with `when:manual` together results in the error `jobs:#{job-name}
when should be on_success, on_failure or always`, because `when:manual` prevents
triggers being used.
#### Simple `trigger` syntax for multi-project pipelines
The simplest way to configure a downstream trigger is to use `trigger` keyword
with a full path to a downstream project:
```yaml
rspec:
stage: test
script: bundle exec rspec
staging:
stage: deploy
trigger: my/deployment
```
#### Complex `trigger` syntax for multi-project pipelines
It's possible to configure a branch name that GitLab will use to create
a downstream pipeline with:
```yaml
rspec:
stage: test
script: bundle exec rspec
staging:
stage: deploy
trigger:
project: my/deployment
branch: stable
```
It's possible to mirror the status from a triggered pipeline:
```yaml
trigger_job:
trigger:
project: my/project
strategy: depend
```
It's possible to mirror the status from an upstream pipeline:
```yaml
upstream_bridge:
stage: test
needs:
pipeline: other/project
```
#### `trigger` syntax for child pipeline
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/16094) in GitLab 12.7.
To create a [child pipeline](../parent_child_pipelines.md), specify the path to the
YAML file containing the CI config of the child pipeline:
```yaml
trigger_job:
trigger:
include: path/to/child-pipeline.yml
```
Similar to [multi-project pipelines](../multi_project_pipelines.md#mirroring-status-from-triggered-pipeline),
it's possible to mirror the status from a triggered pipeline:
```yaml
trigger_job:
trigger:
include:
- local: path/to/child-pipeline.yml
strategy: depend
```
##### Trigger child pipeline with generated configuration file
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/35632) in GitLab 12.9.
You can also trigger a child pipeline from a [dynamically generated configuration file](../parent_child_pipelines.md#dynamic-child-pipelines):
```yaml
generate-config:
stage: build
script: generate-ci-config > generated-config.yml
artifacts:
paths:
- generated-config.yml
child-pipeline:
stage: test
trigger:
include:
- artifact: generated-config.yml
job: generate-config
```
The `generated-config.yml` is extracted from the artifacts and used as the configuration
for triggering the child pipeline.
#### Linking pipelines with `trigger:strategy`
By default, the `trigger` job completes with the `success` status
as soon as the downstream pipeline is created.
To force the `trigger` job to wait for the downstream (multi-project or child) pipeline to complete, use
`strategy: depend`. This will make the trigger job wait with a "running" status until the triggered
pipeline completes. At that point, the `trigger` job will complete and display the same status as
the downstream job.
```yaml
trigger_job:
trigger:
include: path/to/child-pipeline.yml
strategy: depend
```
This can help keep your pipeline execution linear. In the example above, jobs from
subsequent stages will wait for the triggered pipeline to successfully complete before
starting, at the cost of reduced parallelization.
#### Trigger a pipeline by API call
Triggers can be used to force a rebuild of a specific branch, tag or commit,
with an API call when a pipeline gets created using a trigger token.
Not to be confused with the [`trigger`](#trigger) parameter.
[Read more in the triggers documentation.](../triggers/README.md)
### `interruptible`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/32022) in GitLab 12.3.
`interruptible` is used to indicate that a job should be canceled if made redundant by a newer pipeline run. Defaults to `false`.
This value will only be used if the [automatic cancellation of redundant pipelines feature](../pipelines/settings.md#auto-cancel-pending-pipelines)
is enabled.
When enabled, a pipeline on the same branch will be canceled when:
- It's made redundant by a newer pipeline run.
- Either all jobs are set as interruptible, or any uninterruptible jobs haven't started.
Pending jobs are always considered interruptible.
TIP: **Tip:**
Set jobs as interruptible that can be safely canceled once started (for instance, a build job).
Here is a simple example:
```yaml
stages:
- stage1
- stage2
- stage3
step-1:
stage: stage1
script:
- echo "Can be canceled."
interruptible: true
step-2:
stage: stage2
script:
- echo "Can not be canceled."
step-3:
stage: stage3
script:
- echo "Because step-2 can not be canceled, this step will never be canceled, even though set as interruptible."
interruptible: true
```
In the example above, a new pipeline run will cause an existing running pipeline to be:
- Canceled, if only `step-1` is running or pending.
- Not canceled, once `step-2` starts running.
NOTE: **Note:**
Once an uninterruptible job is running, the pipeline will never be canceled, regardless of the final job's state.
### `resource_group`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/15536) in GitLab 12.7.
Sometimes running multiple jobs or pipelines at the same time in an environment
can lead to errors during the deployment.
To avoid these errors, the `resource_group` attribute can be used to ensure that
the runner doesn't run certain jobs simultaneously.
When the `resource_group` key is defined for a job in `.gitlab-ci.yml`,
job executions are mutually exclusive across different pipelines for the same project.
If multiple jobs belonging to the same resource group are enqueued simultaneously,
only one of the jobs is picked by the runner, and the other jobs wait until the
`resource_group` is free.
Here is a simple example:
```yaml
deploy-to-production:
script: deploy
resource_group: production
```
In this case, if a `deploy-to-production` job is running in a pipeline, and a new
`deploy-to-production` job is created in a different pipeline, it won't run until
the currently running/pending `deploy-to-production` job is finished. As a result,
you can ensure that concurrent deployments will never happen to the production environment.
There can be multiple `resource_group`s defined per environment. A good use case for this
is when deploying to physical devices. You may have more than one physical device, and each
one can be deployed to, but there can be only one deployment per device at any given time.
NOTE: **Note:**
This key can only contain letters, digits, `-`, `_`, `/`, `$`, `{`, `}`, `.`, and spaces.
It can't start or end with `/`.
For more information, see [Deployments Safety](../environments/deployment_safety.md).
### `release`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/merge_requests/19298) in GitLab 13.2.
`release` indicates that the job creates a [Release](../../user/project/releases/index.md).
These methods are supported:
- [`tag_name`](#releasetag_name)
- [`name`](#releasename) (optional)
- [`description`](#releasedescription) (optional)
- [`ref`](#releaseref) (optional)
- [`milestones`](#releasemilestones) (optional)
- [`released_at`](#releasereleased_at) (optional)
The Release is created only if the job processes without error. If the Rails API
returns an error during Release creation, the `release` job fails.
#### `release-cli` Docker image
The Docker image to use for the `release-cli` must be specified, using the following directive:
```yaml
image: registry.gitlab.com/gitlab-org/release-cli:latest
```
#### Script
All jobs require a `script` tag at a minimum. A `:release` job can use the output of a
`:script` tag, but if this is not necessary, a placeholder script can be used, for example:
```yaml
script:
- echo 'release job'
```
An [issue](https://gitlab.com/gitlab-org/gitlab/-/issues/223856) exists to remove this requirement in an upcoming version of GitLab.
A pipeline can have multiple `release` jobs, for example:
```yaml
ios-release:
script:
- echo 'iOS release job'
release:
tag_name: v1.0.0-ios
description: 'iOS release v1.0.0'
android-release:
script:
- echo 'Android release job'
release:
tag_name: v1.0.0-android
description: 'Android release v1.0.0'
```
#### `release:tag_name`
The `tag_name` must be specified. It can refer to an existing Git tag or can be specified by the user.
When the specified tag doesn't exist in the repository, a new tag is created from the associated SHA of the pipeline.
For example, when creating a Release from a Git tag:
```yaml
job:
release:
tag_name: $CI_COMMIT_TAG
description: changelog.txt
```
It is also possible to create any unique tag, in which case `only: tags` is not mandatory.
A semantic versioning example:
```yaml
job:
release:
tag_name: ${MAJOR}_${MINOR}_${REVISION}
description: changelog.txt
```
- The Release is created only if the job's main script succeeds.
- If the Release already exists, it is not updated and the job with the `release` keyword fails.
- The `release` section executes after the `script` tag and before the `after_script`.
#### `release:name`
The Release name. If omitted, it is populated with the value of `release: tag_name`.
#### `release:description`
Specifies the longer description of the Release.
#### `release:ref`
If the `release: tag_name` doesnt exist yet, the release is created from `ref`.
`ref` can be a commit SHA, another tag name, or a branch name.
#### `release:milestones`
The title of each milestone the release is associated with.
#### `release:released_at`
The date and time when the release is ready. Defaults to the current date and time if not
defined. Expected in ISO 8601 format (2019-03-15T08:00:00Z).
#### Complete example for `release`
Combining the individual examples given above for `release` results in the following
code snippets. There are two options, depending on how you generate the
tags. These options cannot be used together, so choose one:
- To create a release when you push a Git tag, or when you add a Git tag
in the UI by going to **Repository > Tags**:
```yaml
release_job:
stage: release
image: registry.gitlab.com/gitlab-org/release-cli:latest
rules:
- if: $CI_COMMIT_TAG # Run this job when a tag is created manually
script:
- echo 'running release_job'
release:
name: 'Release $CI_COMMIT_TAG'
description: 'Created using the release-cli $EXTRA_DESCRIPTION' # $EXTRA_DESCRIPTION must be defined
tag_name: '$CI_COMMIT_TAG' # elsewhere in the pipeline.
ref: '$CI_COMMIT_TAG'
milestones:
- 'm1'
- 'm2'
- 'm3'
released_at: '2020-07-15T08:00:00Z' # Optional, will auto generate if not defined,
# or can use a variable.
```
- To create a release automatically when commits are pushed or merged to the default branch,
using a new Git tag that is defined with variables:
NOTE: **Note:**
Environment variables set in `before_script` or `script` are not available for expanding
in the same job. Read more about
[potentially making variables available for expanding](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/6400).
```yaml
prepare_job:
stage: prepare # This stage must run before the release stage
rules:
- if: $CI_COMMIT_TAG
when: never # Do not run this job when a tag is created manually
- if: $CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH # Run this job when commits are pushed or merged to the default branch
script:
- echo "EXTRA_DESCRIPTION=some message" >> variables.env # Generate the EXTRA_DESCRIPTION and TAG environment variables
- echo "TAG=v$(cat VERSION)" >> variables.env # and append to the variables.env file
artifacts:
reports:
dotenv: variables.env # Use artifacts:reports:dotenv to expose the variables to other jobs
release_job:
stage: release
image: registry.gitlab.com/gitlab-org/release-cli:latest
needs:
- job: prepare_job
artifacts: true
rules:
- if: $CI_COMMIT_TAG
when: never # Do not run this job when a tag is created manually
- if: $CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH # Run this job when commits are pushed or merged to the default branch
script:
- echo 'running release_job for $TAG'
release:
name: 'Release $TAG'
description: 'Created using the release-cli $EXTRA_DESCRIPTION' # $EXTRA_DESCRIPTION and the $TAG
tag_name: '$TAG' # variables must be defined elsewhere
ref: '$CI_COMMIT_SHA' # in the pipeline. For example, in the
milestones: # prepare_job
- 'm1'
- 'm2'
- 'm3'
released_at: '2020-07-15T08:00:00Z' # Optional, will auto generate if not defined,
# or can use a variable.
```
#### `releaser-cli` command line
The entries under the `:release` node are transformed into a `bash` command line and sent
to the Docker container, which contains the [release-cli](https://gitlab.com/gitlab-org/release-cli).
You can also call the `release-cli` directly from a `script` entry.
The YAML described above would be translated into a CLI command like this:
```shell
release-cli create --name "Release $CI_COMMIT_SHA" --description "Created using the release-cli $EXTRA_DESCRIPTION" --tag-name "v${MAJOR}.${MINOR}.${REVISION}" --ref "$CI_COMMIT_SHA" --released-at "2020-07-15T08:00:00Z" --milestone "m1" --milestone "m2" --milestone "m3"
```
### `pages`
`pages` is a special job that is used to upload static content to GitLab that
can be used to serve your website. It has a special syntax, so the two
requirements below must be met:
- Any static content must be placed under a `public/` directory.
- `artifacts` with a path to the `public/` directory must be defined.
The example below simply moves all files from the root of the project to the
`public/` directory. The `.public` workaround is so `cp` does not also copy
`public/` to itself in an infinite loop:
```yaml
pages:
stage: deploy
script:
- mkdir .public
- cp -r * .public
- mv .public public
artifacts:
paths:
- public
only:
- master
```
Read more on [GitLab Pages user documentation](../../user/project/pages/index.md).
## `variables`
> Introduced in GitLab Runner v0.5.0.
NOTE: **Note:**
Integers (as well as strings) are legal both for variable's name and value.
Floats are not legal and can't be used.
GitLab CI/CD allows you to define variables inside `.gitlab-ci.yml` that are
then passed in the job environment. They can be set globally and per-job.
When the `variables` keyword is used on a job level, it will override the global
YAML variables and predefined ones of the same name.
They are stored in the Git repository and are meant to store non-sensitive
project configuration, for example:
```yaml
variables:
DATABASE_URL: "postgres://postgres@postgres/my_database"
```
These variables can be later used in all executed commands and scripts.
The YAML-defined variables are also set to all created service containers,
thus allowing to fine tune them.
Except for the user-defined variables, there are also variables [set up by the
runner itself](../variables/README.md#predefined-environment-variables).
One example would be `CI_COMMIT_REF_NAME`, which has the value of
the branch or tag name the project is built for. Apart from the variables
you can set in `.gitlab-ci.yml`, there are also environment
[variables](../variables/README.md#gitlab-cicd-environment-variables),
which can be set in the GitLab UI.
[YAML anchors for variables](#yaml-anchors-for-variables) are available.
Learn more about [variables and their priority](../variables/README.md).
### Git strategy
> - Introduced in GitLab 8.9 as an experimental feature.
> - `GIT_STRATEGY=none` requires GitLab Runner v1.7+.
CAUTION: **Caution:**
May change or be removed completely in future releases.
You can set the `GIT_STRATEGY` used for getting recent application code, either
globally or per-job in the [`variables`](#variables) section. If left
unspecified, the default from project settings will be used.
There are three possible values: `clone`, `fetch`, and `none`.
`clone` is the slowest option. It clones the repository from scratch for every
job, ensuring that the local working copy is always pristine.
```yaml
variables:
GIT_STRATEGY: clone
```
`fetch` is faster as it re-uses the local working copy (falling back to `clone`
if it does not exist). `git clean` is used to undo any changes made by the last
job, and `git fetch` is used to retrieve commits made since the last job ran.
```yaml
variables:
GIT_STRATEGY: fetch
```
`none` also re-uses the local working copy, but skips all Git operations
(including GitLab Runner's pre-clone script, if present). It's mostly useful
for jobs that operate exclusively on artifacts (for example, `deploy`). Git repository
data may be present, but it's certain to be out of date, so you should only
rely on files brought into the local working copy from cache or artifacts.
```yaml
variables:
GIT_STRATEGY: none
```
NOTE: **Note:**
`GIT_STRATEGY` is not supported for
[Kubernetes executor](https://docs.gitlab.com/runner/executors/kubernetes.html),
but may be in the future. See the [support Git strategy with Kubernetes executor feature proposal](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/3847)
for updates.
### Git submodule strategy
> Requires GitLab Runner v1.10+.
The `GIT_SUBMODULE_STRATEGY` variable is used to control if / how Git
submodules are included when fetching the code before a build. You can set them
globally or per-job in the [`variables`](#variables) section.
There are three possible values: `none`, `normal`, and `recursive`:
- `none` means that submodules won't be included when fetching the project
code. This is the default, which matches the pre-v1.10 behavior.
- `normal` means that only the top-level submodules will be included. It's
equivalent to:
```shell
git submodule sync
git submodule update --init
```
- `recursive` means that all submodules (including submodules of submodules)
will be included. This feature needs Git v1.8.1 and later. When using a
GitLab Runner with an executor not based on Docker, make sure the Git version
meets that requirement. It's equivalent to:
```shell
git submodule sync --recursive
git submodule update --init --recursive
```
Note that for this feature to work correctly, the submodules must be configured
(in `.gitmodules`) with either:
- the HTTP(S) URL of a publicly-accessible repository, or
- a relative path to another repository on the same GitLab server. See the
[Git submodules](../git_submodules.md) documentation.
### Git checkout
> Introduced in GitLab Runner 9.3.
The `GIT_CHECKOUT` variable can be used when the `GIT_STRATEGY` is set to either
`clone` or `fetch` to specify whether a `git checkout` should be run. If not
specified, it defaults to true. You can set them globally or per-job in the
[`variables`](#variables) section.
If set to `false`, the runner will:
- when doing `fetch` - update the repository and leave working copy on
the current revision,
- when doing `clone` - clone the repository and leave working copy on the
default branch.
Having this setting set to `true` will mean that for both `clone` and `fetch`
strategies the runner will checkout the working copy to a revision related
to the CI pipeline:
```yaml
variables:
GIT_STRATEGY: clone
GIT_CHECKOUT: "false"
script:
- git checkout -B master origin/master
- git merge $CI_COMMIT_SHA
```
### Git clean flags
> Introduced in GitLab Runner 11.10
The `GIT_CLEAN_FLAGS` variable is used to control the default behavior of
`git clean` after checking out the sources. You can set it globally or per-job in the
[`variables`](#variables) section.
`GIT_CLEAN_FLAGS` accepts all possible options of the [`git clean`](https://git-scm.com/docs/git-clean)
command.
`git clean` is disabled if `GIT_CHECKOUT: "false"` is specified.
If `GIT_CLEAN_FLAGS` is:
- Not specified, `git clean` flags default to `-ffdx`.
- Given the value `none`, `git clean` is not executed.
For example:
```yaml
variables:
GIT_CLEAN_FLAGS: -ffdx -e cache/
script:
- ls -al cache/
```
### Git fetch extra flags
> [Introduced](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4142) in GitLab Runner 13.1.
The `GIT_FETCH_EXTRA_FLAGS` variable is used to control the behavior of
`git fetch`. You can set it globally or per-job in the [`variables`](#variables) section.
`GIT_FETCH_EXTRA_FLAGS` accepts all possible options of the [`git fetch`](https://git-scm.com/docs/git-fetch) command, but please note that `GIT_FETCH_EXTRA_FLAGS` flags will be appended after the default flags that can't be modified.
The default flags are:
- [GIT_DEPTH](#shallow-cloning).
- The list of [refspecs](https://git-scm.com/book/en/v2/Git-Internals-The-Refspec).
- A remote called `origin`.
If `GIT_FETCH_EXTRA_FLAGS` is:
- Not specified, `git fetch` flags default to `--prune --quiet` along with the default flags.
- Given the value `none`, `git fetch` is executed only with the default flags.
For example, the default flags are `--prune --quiet`, so you can make `git fetch` more verbose by overriding this with just `--prune`:
```yaml
variables:
GIT_FETCH_EXTRA_FLAGS: --prune
script:
- ls -al cache/
```
The configurtion above will result in `git fetch` being called this way:
```shell
git fetch origin $REFSPECS --depth 50 --prune
```
Where `$REFSPECS` is a value provided to the runner internally by GitLab.
### Job stages attempts
> Introduced in GitLab, it requires GitLab Runner v1.9+.
You can set the number for attempts the running job will try to execute each
of the following stages:
| Variable | Description |
|-----------------------------------|--------------------------------------------------------|
| **ARTIFACT_DOWNLOAD_ATTEMPTS** | Number of attempts to download artifacts running a job |
| **EXECUTOR_JOB_SECTION_ATTEMPTS** | [Since GitLab 12.10](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4450), the number of attempts to run a section in a job after a [`No Such Container`](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/4450) error ([Docker executor](https://docs.gitlab.com/runner/executors/docker.html) only). |
| **GET_SOURCES_ATTEMPTS** | Number of attempts to fetch sources running a job |
| **RESTORE_CACHE_ATTEMPTS** | Number of attempts to restore the cache running a job |
The default is one single attempt.
Example:
```yaml
variables:
GET_SOURCES_ATTEMPTS: 3
```
You can set them globally or per-job in the [`variables`](#variables) section.
### Shallow cloning
> Introduced in GitLab 8.9 as an experimental feature.
NOTE: **Note:**
As of GitLab 12.0, newly created projects will automatically have a [default `git depth` value of `50`](../pipelines/settings.md#git-shallow-clone).
You can specify the depth of fetching and cloning using `GIT_DEPTH`. This does a
shallow clone of the repository and can significantly speed up cloning for
repositories with a large number of commits or old, large binaries. The value is
passed to `git fetch` and `git clone`.
NOTE: **Note:**
If you use a depth of 1 and have a queue of jobs or retry
jobs, jobs may fail.
Since Git fetching and cloning is based on a ref, such as a branch name, runners
can't clone a specific commit SHA. If there are multiple jobs in the queue, or
you're retrying an old job, the commit to be tested needs to be within the
Git history that is cloned. Setting too small a value for `GIT_DEPTH` can make
it impossible to run these old commits. You will see `unresolved reference` in
job logs. You should then reconsider changing `GIT_DEPTH` to a higher value.
Jobs that rely on `git describe` may not work correctly when `GIT_DEPTH` is
set since only part of the Git history is present.
To fetch or clone only the last 3 commits:
```yaml
variables:
GIT_DEPTH: "3"
```
You can set it globally or per-job in the [`variables`](#variables) section.
### Custom build directories
> [Introduced](https://gitlab.com/gitlab-org/gitlab-runner/-/issues/2211) in GitLab Runner 11.10.
NOTE: **Note:**
This can only be used when `custom_build_dir` is enabled in the [runner's
configuration](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-runnerscustom_build_dir-section).
This is the default configuration for `docker` and `kubernetes` executor.
By default, GitLab Runner clones the repository in a unique subpath of the
`$CI_BUILDS_DIR` directory. However, your project might require the code in a
specific directory (Go projects, for example). In that case, you can specify
the `GIT_CLONE_PATH` variable to tell the runner the directory to clone the
repository in:
```yaml
variables:
GIT_CLONE_PATH: $CI_BUILDS_DIR/project-name
test:
script:
- pwd
```
The `GIT_CLONE_PATH` has to always be within `$CI_BUILDS_DIR`. The directory set in `$CI_BUILDS_DIR`
is dependent on executor and configuration of [runners.builds_dir](https://docs.gitlab.com/runner/configuration/advanced-configuration.html#the-runners-section)
setting.
#### Handling concurrency
An executor using a concurrency greater than `1` might lead
to failures because multiple jobs might be working on the same directory if the `builds_dir`
is shared between jobs.
GitLab Runner does not try to prevent this situation. It's up to the administrator
and developers to comply with the requirements of runner configuration.
To avoid this scenario, you can use a unique path within `$CI_BUILDS_DIR`, because runner
exposes two additional variables that provide a unique `ID` of concurrency:
- `$CI_CONCURRENT_ID`: Unique ID for all jobs running within the given executor.
- `$CI_CONCURRENT_PROJECT_ID`: Unique ID for all jobs running within the given executor and project.
The most stable configuration that should work well in any scenario and on any executor
is to use `$CI_CONCURRENT_ID` in the `GIT_CLONE_PATH`. For example:
```yaml
variables:
GIT_CLONE_PATH: $CI_BUILDS_DIR/$CI_CONCURRENT_ID/project-name
test:
script:
- pwd
```
The `$CI_CONCURRENT_PROJECT_ID` should be used in conjunction with `$CI_PROJECT_PATH`
as the `$CI_PROJECT_PATH` provides a path of a repository. That is, `group/subgroup/project`. For example:
```yaml
variables:
GIT_CLONE_PATH: $CI_BUILDS_DIR/$CI_CONCURRENT_ID/$CI_PROJECT_PATH
test:
script:
- pwd
```
#### Nested paths
The value of `GIT_CLONE_PATH` is expanded once and nesting variables
within is not supported.
For example, you define both the variables below in your
`.gitlab-ci.yml` file:
```yaml
variables:
GOPATH: $CI_BUILDS_DIR/go
GIT_CLONE_PATH: $GOPATH/src/namespace/project
```
The value of `GIT_CLONE_PATH` is expanded once into
`$CI_BUILDS_DIR/go/src/namespace/project`, and results in failure
because `$CI_BUILDS_DIR` is not expanded.
## Special YAML features
It's possible to use special YAML features like anchors (`&`), aliases (`*`)
and map merging (`<<`), which allows you to greatly reduce the complexity
of `.gitlab-ci.yml`.
Read more about the various [YAML features](https://learnxinyminutes.com/docs/yaml/).
In most cases, the [`extends` keyword](#extends) is more user friendly and should
be used over these special YAML features. YAML anchors may still
need to be used to merge arrays.
### Anchors
> Introduced in GitLab 8.6 and GitLab Runner v1.1.1.
YAML has a handy feature called 'anchors', which lets you easily duplicate
content across your document. Anchors can be used to duplicate/inherit
properties, and is a perfect example to be used with [hidden jobs](#hide-jobs)
to provide templates for your jobs. When there is duplicate keys, GitLab will
perform a reverse deep merge based on the keys.
The following example uses anchors and map merging. It will create two jobs,
`test1` and `test2`, that will inherit the parameters of `.job_template`, each
having their own custom `script` defined:
```yaml
.job_template: &job_definition # Hidden key that defines an anchor named 'job_definition'
image: ruby:2.6
services:
- postgres
- redis
test1:
<<: *job_definition # Merge the contents of the 'job_definition' alias
script:
- test1 project
test2:
<<: *job_definition # Merge the contents of the 'job_definition' alias
script:
- test2 project
```
`&` sets up the name of the anchor (`job_definition`), `<<` means "merge the
given hash into the current one", and `*` includes the named anchor
(`job_definition` again). The expanded version looks like this:
```yaml
.job_template:
image: ruby:2.6
services:
- postgres
- redis
test1:
image: ruby:2.6
services:
- postgres
- redis
script:
- test1 project
test2:
image: ruby:2.6
services:
- postgres
- redis
script:
- test2 project
```
Let's see another one example. This time we will use anchors to define two sets
of services. This will create two jobs, `test:postgres` and `test:mysql`, that
will share the `script` directive defined in `.job_template`, and the `services`
directive defined in `.postgres_services` and `.mysql_services` respectively:
```yaml
.job_template: &job_definition
script:
- test project
tags:
- dev
.postgres_services:
services: &postgres_definition
- postgres
- ruby
.mysql_services:
services: &mysql_definition
- mysql
- ruby
test:postgres:
<<: *job_definition
services: *postgres_definition
tags:
- postgres
test:mysql:
<<: *job_definition
services: *mysql_definition
```
The expanded version looks like this:
```yaml
.job_template:
script:
- test project
tags:
- dev
.postgres_services:
services:
- postgres
- ruby
.mysql_services:
services:
- mysql
- ruby
test:postgres:
script:
- test project
services:
- postgres
- ruby
tags:
- postgres
test:mysql:
script:
- test project
services:
- mysql
- ruby
tags:
- dev
```
You can see that the hidden jobs are conveniently used as templates.
NOTE: **Note:**
Note that `tags: [dev]` has been overwritten by `tags: [postgres]`.
NOTE: **Note:**
You can't use YAML anchors across multiple files when leveraging the [`include`](#include)
feature. Anchors are only valid within the file they were defined in. Instead
of using YAML anchors, you can use the [`extends` keyword](#extends).
#### YAML anchors for `before_script` and `after_script`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/23005) in GitLab 12.5.
You can use [YAML anchors](#anchors) with `before_script` and `after_script`,
which makes it possible to include a predefined list of commands in multiple
jobs.
Example:
```yaml
.something_before: &something_before
- echo 'something before'
.something_after: &something_after
- echo 'something after'
- echo 'another thing after'
job_name:
before_script:
- *something_before
script:
- echo 'this is the script'
after_script:
- *something_after
```
#### YAML anchors for `script`
> [Introduced](https://gitlab.com/gitlab-org/gitlab/-/issues/23005) in GitLab 12.5.
You can use [YAML anchors](#anchors) with scripts, which makes it possible to
include a predefined list of commands in multiple jobs.
For example:
```yaml
.something: &something
- echo 'something'
job_name:
script:
- *something
- echo 'this is the script'
```
#### YAML anchors for variables
[YAML anchors](#anchors) can be used with `variables`, to easily repeat assignment
of variables across multiple jobs. It can also enable more flexibility when a job
requires a specific `variables` block that would otherwise override the global variables.
In the example below, we will override the `GIT_STRATEGY` variable without affecting
the use of the `SAMPLE_VARIABLE` variable:
```yaml
# global variables
variables: &global-variables
SAMPLE_VARIABLE: sample_variable_value
ANOTHER_SAMPLE_VARIABLE: another_sample_variable_value
# a job that needs to set the GIT_STRATEGY variable, yet depend on global variables
job_no_git_strategy:
stage: cleanup
variables:
<<: *global-variables
GIT_STRATEGY: none
script: echo $SAMPLE_VARIABLE
```
### Hide jobs
> Introduced in GitLab 8.6 and GitLab Runner v1.1.1.
If you want to temporarily 'disable' a job, rather than commenting out all the
lines where the job is defined:
```yaml
#hidden_job:
# script:
# - run test
```
You can instead start its name with a dot (`.`) and it won't be processed by
GitLab CI/CD. In the following example, `.hidden_job` will be ignored:
```yaml
.hidden_job:
script:
- run test
```
Use this feature to ignore jobs, or use the
[special YAML features](#special-yaml-features) and transform the hidden jobs
into templates.
## Skip Pipeline
If your commit message contains `[ci skip]` or `[skip ci]`, using any
capitalization, the commit will be created but the pipeline will be skipped.
Alternatively, one can pass the `ci.skip` [Git push option](../../user/project/push_options.md#push-options-for-gitlab-cicd)
if using Git 2.10 or newer.
## Processing Git pushes
GitLab will create at most 4 branch and tag pipelines when
pushing multiple changes in single `git push` invocation.
This limitation does not affect any of the updated Merge Request pipelines.
All updated Merge Requests will have a pipeline created when using
[pipelines for merge requests](../merge_request_pipelines/index.md).
## Deprecated parameters
The following parameters are deprecated.
### Globally-defined `types`
CAUTION: **Deprecated:**
`types` is deprecated, and could be removed in a future release.
Use [`stages`](#stages) instead.
### Job-defined `type`
CAUTION: **Deprecated:**
`type` is deprecated, and could be removed in one of the future releases.
Use [`stage`](#stage) instead.
### Globally-defined `image`, `services`, `cache`, `before_script`, `after_script`
Defining `image`, `services`, `cache`, `before_script`, and
`after_script` globally is deprecated. Support could be removed
from a future release.
Use [`default:`](#global-defaults) instead. For example:
```yaml
default:
image: ruby:2.5
services:
- docker:dind
cache:
paths: [vendor/]
before_script:
- bundle install --path vendor/
after_script:
- rm -rf tmp/
```
<!-- ## Troubleshooting
Include any troubleshooting steps that you can foresee. If you know beforehand what issues
one might have when setting this up, or when something is changed, or on upgrading, it's
important to describe those, too. Think of things that may go wrong and include them here.
This is important to minimize requests for support, and to avoid doc comments with
questions that you know someone might ask.
Each scenario can be a third-level heading, e.g. `### Getting error message X`.
If you have none to add when creating a doc, leave this section in place
but commented out to help encourage others to add to it in the future. -->