debian-mirror-gitlab/doc/ci/yaml/README.md
2019-02-13 22:33:31 +05:30

2313 lines
68 KiB
Markdown

# Configuration of your jobs with .gitlab-ci.yml
This document describes the usage of `.gitlab-ci.yml`, the file that is used by
GitLab Runner to manage your project's jobs.
From version 7.12, GitLab CI uses a [YAML](https://en.wikipedia.org/wiki/YAML)
file (`.gitlab-ci.yml`) for the project configuration. It is placed in the root
of your repository and contains definitions of how your project should be built.
If you want a quick introduction to GitLab CI, follow our
[quick start guide](../quick_start/README.md).
NOTE: **Note:**
If you have a [mirrored repository where GitLab pulls from](https://docs.gitlab.com/ee/workflow/repository_mirroring.html#pulling-from-a-remote-repository),
you may need to enable pipeline triggering in your project's
**Settings > Repository > Pull from a remote repository > Trigger pipelines for mirror updates**.
## Jobs
The YAML file defines a set of jobs with constraints stating when they should
be run. You can specify an unlimited number of jobs which are defined as
top-level elements with an arbitrary name and always have to contain at least
the `script` clause.
```yaml
job1:
script: "execute-script-for-job1"
job2:
script: "execute-script-for-job2"
```
The above example is the simplest possible CI/CD configuration with two separate
jobs, where each of the jobs executes a different command.
Of course a command can execute code directly (`./configure;make;make install`)
or run a script (`test.sh`) in the repository.
Jobs are picked up by [Runners](../runners/README.md) and executed within the
environment of the Runner. What is important, is that each job is run
independently from each other.
Each job must have a unique name, but there are a few **reserved `keywords` that
cannot be used as job names**:
- `image`
- `services`
- `stages`
- `types`
- `before_script`
- `after_script`
- `variables`
- `cache`
A job is defined by a list of parameters that define the job behavior.
| Keyword | Required | Description |
|---------------|----------|-------------|
| [script](#script) | yes | Defines a shell script which is executed by Runner |
| [extends](#extends) | no | Defines a configuration entry that this job is going to inherit from |
| [image](#image-and-services) | no | Use docker image, covered in [Using Docker Images](../docker/using_docker_images.md#define-image-and-services-from-gitlab-ciyml) |
| [services](#image-and-services) | no | Use docker services, covered in [Using Docker Images](../docker/using_docker_images.md#define-image-and-services-from-gitlab-ciyml) |
| [stage](#stage) | no | Defines a job stage (default: `test`) |
| type | no | Alias for `stage` |
| [variables](#variables) | no | Define job variables on a job level |
| [only](#only-and-except-simplified) | no | Defines a list of git refs for which job is created |
| [except](#only-and-except-simplified) | no | Defines a list of git refs for which job is not created |
| [tags](#tags) | no | Defines a list of tags which are used to select Runner |
| [allow_failure](#allow_failure) | no | Allow job to fail. Failed job doesn't contribute to commit status |
| [when](#when) | no | Define when to run job. Can be `on_success`, `on_failure`, `always` or `manual` |
| [dependencies](#dependencies) | no | Define other jobs that a job depends on so that you can pass artifacts between them|
| [artifacts](#artifacts) | no | Define list of [job artifacts](#artifacts) |
| [cache](#cache) | no | Define list of files that should be cached between subsequent runs |
| [before_script](#before_script-and-after_script) | no | Override a set of commands that are executed before job |
| [after_script](#before_script-and-after_script) | no | Override a set of commands that are executed after job |
| [environment](#environment) | no | Defines a name of environment to which deployment is done by this job |
| [coverage](#coverage) | no | Define code coverage settings for a given job |
| [retry](#retry) | no | Define when and how many times a job can be auto-retried in case of a failure |
| [parallel](#parallel) | no | Defines how many instances of a job should be run in parallel |
### `extends`
> Introduced in GitLab 11.3.
`extends` defines an entry name that a job that uses `extends` is going to
inherit from.
It is an alternative to using [YAML anchors](#anchors) and is a little
more flexible and readable:
```yaml
.tests:
script: rake test
stage: test
only:
refs:
- branches
rspec:
extends: .tests
script: rake rspec
only:
variables:
- $RSPEC
```
In the example above, the `rspec` job inherits from the `.tests` template job.
GitLab will perform a reverse deep merge based on the keys. GitLab will:
- Merge the `rspec` contents into `.tests` recursively.
- Not merge the values of the keys.
This results in the following `rspec` job:
```yaml
rspec:
script: rake rspec
stage: test
only:
refs:
- branches
variables:
- $RSPEC
```
NOTE: **Note:**
Note that `script: rake test` has been overwritten by `script: rake rspec`.
If you do want to include the `rake test`, have a look at [before_script-and-after_script](#before_script-and-after_script).
`.tests` in this example is a [hidden key](#hidden-keys-jobs), but it's
possible to inherit from regular jobs as well.
`extends` supports multi-level inheritance, however it is not recommended to
use more than three levels. The maximum nesting level that is supported is 10.
The following example has two levels of inheritance:
```yaml
.tests:
only:
- pushes
.rspec:
extends: .tests
script: rake rspec
rspec 1:
variables:
RSPEC_SUITE: '1'
extends: .rspec
rspec 2:
variables:
RSPEC_SUITE: '2'
extends: .rspec
spinach:
extends: .tests
script: rake spinach
```
`extends` works across configuration files combined with [`include`](#include).
### `pages`
`pages` is a special job that is used to upload static content to GitLab that
can be used to serve your website. It has a special syntax, so the two
requirements below must be met:
1. Any static content must be placed under a `public/` directory
1. `artifacts` with a path to the `public/` directory must be defined
The example below simply moves all files from the root of the project to the
`public/` directory. The `.public` workaround is so `cp` doesn't also copy
`public/` to itself in an infinite loop:
```yaml
pages:
stage: deploy
script:
- mkdir .public
- cp -r * .public
- mv .public public
artifacts:
paths:
- public
only:
- master
```
Read more on [GitLab Pages user documentation](../../user/project/pages/index.md).
## `image` and `services`
This allows to specify a custom Docker image and a list of services that can be
used for time of the job. The configuration of this feature is covered in
[a separate document](../docker/README.md).
## `before_script` and `after_script`
> Introduced in GitLab 8.7 and requires GitLab Runner v1.2
`before_script` is used to define the command that should be run before all
jobs, including deploy jobs, but after the restoration of [artifacts](#artifacts).
This can be an array or a multi-line string.
`after_script` is used to define the command that will be run after all
jobs, including failed ones. This has to be an array or a multi-line string.
The `before_script` and the main `script` are concatenated and run in a single context/container.
The `after_script` is run separately, so depending on the executor, changes done
outside of the working tree might not be visible, e.g. software installed in the
`before_script`.
It's possible to overwrite the globally defined `before_script` and `after_script`
if you set it per-job:
```yaml
before_script:
- global before script
job:
before_script:
- execute this instead of global before script
script:
- my command
after_script:
- execute this after my script
```
## `stages`
`stages` is used to define stages that can be used by jobs and is defined
globally.
The specification of `stages` allows for having flexible multi stage pipelines.
The ordering of elements in `stages` defines the ordering of jobs' execution:
1. Jobs of the same stage are run in parallel.
1. Jobs of the next stage are run after the jobs from the previous stage
complete successfully.
Let's consider the following example, which defines 3 stages:
```yaml
stages:
- build
- test
- deploy
```
1. First, all jobs of `build` are executed in parallel.
1. If all jobs of `build` succeed, the `test` jobs are executed in parallel.
1. If all jobs of `test` succeed, the `deploy` jobs are executed in parallel.
1. If all jobs of `deploy` succeed, the commit is marked as `passed`.
1. If any of the previous jobs fails, the commit is marked as `failed` and no
jobs of further stage are executed.
There are also two edge cases worth mentioning:
1. If no `stages` are defined in `.gitlab-ci.yml`, then the `build`,
`test` and `deploy` are allowed to be used as job's stage by default.
2. If a job doesn't specify a `stage`, the job is assigned the `test` stage.
## `stage`
`stage` is defined per-job and relies on [`stages`](#stages) which is defined
globally. It allows to group jobs into different stages, and jobs of the same
`stage` are executed in `parallel`. For example:
```yaml
stages:
- build
- test
- deploy
job 1:
stage: build
script: make build dependencies
job 2:
stage: build
script: make build artifacts
job 3:
stage: test
script: make test
job 4:
stage: deploy
script: make deploy
```
## `types`
CAUTION: **Deprecated:**
`types` is deprecated, and could be removed in one of the future releases.
Use [stages](#stages) instead.
## `script`
`script` is the only required keyword that a job needs. It's a shell script
which is executed by the Runner. For example:
```yaml
job:
script: "bundle exec rspec"
```
This parameter can also contain several commands using an array:
```yaml
job:
script:
- uname -a
- bundle exec rspec
```
Sometimes, `script` commands will need to be wrapped in single or double quotes.
For example, commands that contain a colon (`:`) need to be wrapped in quotes so
that the YAML parser knows to interpret the whole thing as a string rather than
a "key: value" pair. Be careful when using special characters:
`:`, `{`, `}`, `[`, `]`, `,`, `&`, `*`, `#`, `?`, `|`, `-`, `<`, `>`, `=`, `!`, `%`, `@`, `` ` ``.
## `only` and `except` (simplified)
`only` and `except` are two parameters that set a job policy to limit when
jobs are created:
1. `only` defines the names of branches and tags for which the job will run.
2. `except` defines the names of branches and tags for which the job will
**not** run.
There are a few rules that apply to the usage of job policy:
* `only` and `except` are inclusive. If both `only` and `except` are defined
in a job specification, the ref is filtered by `only` and `except`.
* `only` and `except` allow the use of regular expressions (using [Ruby regexp syntax](https://ruby-doc.org/core/Regexp.html)).
* `only` and `except` allow to specify a repository path to filter jobs for
forks.
In addition, `only` and `except` allow the use of special keywords:
| **Value** | **Description** |
| --------- | ---------------- |
| `branches` | When a git reference of a pipeline is a branch. |
| `tags` | When a git reference of a pipeline is a tag. |
| `api` | When pipeline has been triggered by a second pipelines API (not triggers API). |
| `external` | When using CI services other than GitLab. |
| `pipelines` | For multi-project triggers, created using the API with `CI_JOB_TOKEN`. |
| `pushes` | Pipeline is triggered by a `git push` by the user. |
| `schedules` | For [scheduled pipelines][schedules]. |
| `triggers` | For pipelines created using a trigger token. |
| `web` | For pipelines created using **Run pipeline** button in GitLab UI (under your project's **Pipelines**). |
| `merge_requests` | When a merge request is created or updated (See [pipelines for merge requests](../merge_request_pipelines/index.md)). |
In the example below, `job` will run only for refs that start with `issue-`,
whereas all branches will be skipped:
```yaml
job:
# use regexp
only:
- /^issue-.*$/
# use special keyword
except:
- branches
```
In this example, `job` will run only for refs that are tagged, or if a build is
explicitly requested via an API trigger or a [Pipeline Schedule][schedules]:
```yaml
job:
# use special keywords
only:
- tags
- triggers
- schedules
```
The repository path can be used to have jobs executed only for the parent
repository and not forks:
```yaml
job:
only:
- branches@gitlab-org/gitlab-ce
except:
- master@gitlab-org/gitlab-ce
```
The above example will run `job` for all branches on `gitlab-org/gitlab-ce`,
except master.
If a job does not have an `only` rule, `only: ['branches', 'tags']` is set by
default. If it doesn't have an `except` rule, it is empty.
For example,
```yaml
job:
script: echo 'test'
```
is translated to:
```yaml
job:
script: echo 'test'
only: ['branches', 'tags']
```
## `only` and `except` (complex)
> - `refs` and `kubernetes` policies introduced in GitLab 10.0.
> - `variables` policy introduced in GitLab 10.7.
> - `changes` policy [introduced](https://gitlab.com/gitlab-org/gitlab-ce/issues/19232) in GitLab 11.4.
CAUTION: **Warning:**
This an _alpha_ feature, and it is subject to change at any time without
prior notice!
GitLab supports both simple and complex strategies, so it's possible to use an
array and a hash configuration scheme.
Four keys are available:
- `refs`
- `variables`
- `changes`
- `kubernetes`
If you use multiple keys under `only` or `except`, they act as an AND. The logic is:
> (any of refs) AND (any of variables) AND (any of changes) AND (if kubernetes is active)
### `only:refs` and `except:refs`
The `refs` strategy can take the same values as the
[simplified only/except configuration](#only-and-except-simplified).
In the example below, the `deploy` job is going to be created only when the
pipeline has been [scheduled][schedules] or runs for the `master` branch:
```yaml
deploy:
only:
refs:
- master
- schedules
```
### `only:kubernetes` and `except:kubernetes`
The `kubernetes` strategy accepts only the `active` keyword.
In the example below, the `deploy` job is going to be created only when the
Kubernetes service is active in the project:
```yaml
deploy:
only:
kubernetes: active
```
### `only:variables` and `except:variables`
The `variables` keyword is used to define variables expressions. In other words,
you can use predefined variables / project / group or
environment-scoped variables to define an expression GitLab is going to
evaluate in order to decide whether a job should be created or not.
Examples of using variables expressions:
```yaml
deploy:
script: cap staging deploy
only:
refs:
- branches
variables:
- $RELEASE == "staging"
- $STAGING
```
Another use case is excluding jobs depending on a commit message:
```yaml
end-to-end:
script: rake test:end-to-end
except:
variables:
- $CI_COMMIT_MESSAGE =~ /skip-end-to-end-tests/
```
Learn more about [variables expressions](../variables/README.md#variables-expressions).
### `only:changes` and `except:changes`
Using the `changes` keyword with `only` or `except`, makes it possible to define if
a job should be created based on files modified by a git push event.
For example:
```yaml
docker build:
script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
only:
changes:
- Dockerfile
- docker/scripts/*
- dockerfiles/**/*
- more_scripts/*.{rb,py,sh}
```
In the scenario above, if you are pushing multiple commits to GitLab to an
existing branch, GitLab creates and triggers the `docker build` job, provided that
one of the commits contains changes to either:
- The `Dockerfile` file.
- Any of the files inside `docker/scripts/` directory.
- Any of the files and subdirectories inside the `dockerfiles` directory.
- Any of the files with `rb`, `py`, `sh` extensions inside the `more_scripts` directory.
CAUTION: **Warning:**
There are some caveats when using this feature with new branches and tags. See
the section below.
#### Using `changes` with new branches and tags
If you are pushing a **new** branch or a **new** tag to GitLab, the policy
always evaluates to true and GitLab will create a job. This feature is not
connected with merge requests yet, and because GitLab is creating pipelines
before an user can create a merge request we don't know a target branch at
this point.
Without a target branch, it is not possible to know what the common ancestor is,
thus we always create a job in that case. This feature works best for stable
branches like `master` because in that case GitLab uses the previous commit
that is present in a branch to compare against the latest SHA that was pushed.
## `tags`
`tags` is used to select specific Runners from the list of all Runners that are
allowed to run this project.
During the registration of a Runner, you can specify the Runner's tags, for
example `ruby`, `postgres`, `development`.
`tags` allow you to run jobs with Runners that have the specified tags
assigned to them:
```yaml
job:
tags:
- ruby
- postgres
```
The specification above, will make sure that `job` is built by a Runner that
has both `ruby` AND `postgres` tags defined.
Tags are also a great way to run different jobs on different platforms, for
example, given an OS X Runner with tag `osx` and Windows Runner with tag
`windows`, the following jobs run on respective platforms:
```yaml
windows job:
stage:
- build
tags:
- windows
script:
- echo Hello, %USERNAME%!
osx job:
stage:
- build
tags:
- osx
script:
- echo "Hello, $USER!"
```
## `allow_failure`
`allow_failure` allows a job to fail without impacting the rest of the CI
suite.
The default value is `false`, except for [manual](#whenmanual) jobs.
When enabled and the job fails, the job will show an orange warning in the UI.
However, the logical flow of the pipeline will consider the job a
success/passed, and is not blocked.
Assuming all other jobs are successful, the job's stage and its pipeline will
show the same orange warning. However, the associated commit will be marked
"passed", without warnings.
In the example below, `job1` and `job2` will run in parallel, but if `job1`
fails, it will not stop the next stage from running, since it's marked with
`allow_failure: true`:
```yaml
job1:
stage: test
script:
- execute_script_that_will_fail
allow_failure: true
job2:
stage: test
script:
- execute_script_that_will_succeed
job3:
stage: deploy
script:
- deploy_to_staging
```
## `when`
`when` is used to implement jobs that are run in case of failure or despite the
failure.
`when` can be set to one of the following values:
1. `on_success` - execute job only when all jobs from prior stages
succeed (or are considered succeeding because they are marked
`allow_failure`). This is the default.
1. `on_failure` - execute job only when at least one job from prior stages
fails.
1. `always` - execute job regardless of the status of jobs from prior stages.
1. `manual` - execute job manually (added in GitLab 8.10). Read about
[manual actions](#whenmanual) below.
For example:
```yaml
stages:
- build
- cleanup_build
- test
- deploy
- cleanup
build_job:
stage: build
script:
- make build
cleanup_build_job:
stage: cleanup_build
script:
- cleanup build when failed
when: on_failure
test_job:
stage: test
script:
- make test
deploy_job:
stage: deploy
script:
- make deploy
when: manual
cleanup_job:
stage: cleanup
script:
- cleanup after jobs
when: always
```
The above script will:
1. Execute `cleanup_build_job` only when `build_job` fails.
2. Always execute `cleanup_job` as the last step in pipeline regardless of
success or failure.
3. Allow you to manually execute `deploy_job` from GitLab's UI.
### `when:manual`
> **Notes:**
>
> - Introduced in GitLab 8.10.
> - Blocking manual actions were introduced in GitLab 9.0.
> - Protected actions were introduced in GitLab 9.2.
Manual actions are a special type of job that are not executed automatically,
they need to be explicitly started by a user. An example usage of manual actions
would be a deployment to a production environment. Manual actions can be started
from the pipeline, job, environment, and deployment views. Read more at the
[environments documentation](../environments.md#manually-deploying-to-environments).
Manual actions can be either optional or blocking. Blocking manual actions will
block the execution of the pipeline at the stage this action is defined in. It's
possible to resume execution of the pipeline when someone executes a blocking
manual action by clicking a _play_ button.
When a pipeline is blocked, it will not be merged if Merge When Pipeline Succeeds
is set. Blocked pipelines also do have a special status, called _manual_.
Manual actions are non-blocking by default. If you want to make manual action
blocking, it is necessary to add `allow_failure: false` to the job's definition
in `.gitlab-ci.yml`.
Optional manual actions have `allow_failure: true` set by default and their
Statuses do not contribute to the overall pipeline status. So, if a manual
action fails, the pipeline will eventually succeed.
Manual actions are considered to be write actions, so permissions for
[protected branches](../../user/project/protected_branches.md) are used when
user wants to trigger an action. In other words, in order to trigger a manual
action assigned to a branch that the pipeline is running for, user needs to
have ability to merge to this branch.
### `when:delayed`
> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/21767) in GitLab 11.4.
Delayed job are for executing scripts after a certain period.
This is useful if you want to avoid jobs entering `pending` state immediately.
You can set the period with `start_in` key. The value of `start_in` key is an elapsed time in seconds, unless a unit is
provided. `start_in` key must be less than or equal to one hour. Examples of valid values include:
- `10 seconds`
- `30 minutes`
- `1 hour`
When there is a delayed job in a stage, the pipeline will not progress until the delayed job has finished.
This means this keyword can also be used for inserting delays between different stages.
The timer of a delayed job starts immediately after the previous stage has completed.
Similar to other types of jobs, a delayed job's timer will not start unless the previous stage passed.
The following example creates a job named `timed rollout 10%` that is executed 30 minutes after the previous stage has completed:
```yaml
timed rollout 10%:
stage: deploy
script: echo 'Rolling out 10% ...'
when: delayed
start_in: 30 minutes
```
You can stop the active timer of a delayed job by clicking the **Unschedule** button.
This job will never be executed in the future unless you execute the job manually.
You can start a delayed job immediately by clicking the **Play** button.
GitLab runner will pick your job soon and start the job.
## `environment`
> **Notes:**
>
> - Introduced in GitLab 8.9.
> - You can read more about environments and find more examples in the
> [documentation about environments][environment].
`environment` is used to define that a job deploys to a specific environment.
If `environment` is specified and no environment under that name exists, a new
one will be created automatically.
In its simplest form, the `environment` keyword can be defined like:
```yaml
deploy to production:
stage: deploy
script: git push production HEAD:master
environment:
name: production
```
In the above example, the `deploy to production` job will be marked as doing a
deployment to the `production` environment.
### `environment:name`
> **Notes:**
>
> - Introduced in GitLab 8.11.
> - Before GitLab 8.11, the name of an environment could be defined as a string like
> `environment: production`. The recommended way now is to define it under the
> `name` keyword.
> - The `name` parameter can use any of the defined CI variables,
> including predefined, secure variables and `.gitlab-ci.yml` [`variables`](#variables).
> You however cannot use variables defined under `script`.
The `environment` name can contain:
- letters
- digits
- spaces
- `-`
- `_`
- `/`
- `$`
- `{`
- `}`
Common names are `qa`, `staging`, and `production`, but you can use whatever
name works with your workflow.
Instead of defining the name of the environment right after the `environment`
keyword, it is also possible to define it as a separate value. For that, use
the `name` keyword under `environment`:
```yaml
deploy to production:
stage: deploy
script: git push production HEAD:master
environment:
name: production
```
### `environment:url`
> **Notes:**
>
> - Introduced in GitLab 8.11.
> - Before GitLab 8.11, the URL could be added only in GitLab's UI. The
> recommended way now is to define it in `.gitlab-ci.yml`.
> - The `url` parameter can use any of the defined CI variables,
> including predefined, secure variables and `.gitlab-ci.yml` [`variables`](#variables).
> You however cannot use variables defined under `script`.
This is an optional value that when set, it exposes buttons in various places
in GitLab which when clicked take you to the defined URL.
In the example below, if the job finishes successfully, it will create buttons
in the merge requests and in the environments/deployments pages which will point
to `https://prod.example.com`.
```yaml
deploy to production:
stage: deploy
script: git push production HEAD:master
environment:
name: production
url: https://prod.example.com
```
### `environment:on_stop`
> **Notes:**
>
> - [Introduced][ce-6669] in GitLab 8.13.
> - Starting with GitLab 8.14, when you have an environment that has a stop action
> defined, GitLab will automatically trigger a stop action when the associated
> branch is deleted.
Closing (stopping) environments can be achieved with the `on_stop` keyword defined under
`environment`. It declares a different job that runs in order to close
the environment.
Read the `environment:action` section for an example.
### `environment:action`
> [Introduced][ce-6669] in GitLab 8.13.
The `action` keyword is to be used in conjunction with `on_stop` and is defined
in the job that is called to close the environment.
Take for instance:
```yaml
review_app:
stage: deploy
script: make deploy-app
environment:
name: review
on_stop: stop_review_app
stop_review_app:
stage: deploy
script: make delete-app
when: manual
environment:
name: review
action: stop
```
In the above example we set up the `review_app` job to deploy to the `review`
environment, and we also defined a new `stop_review_app` job under `on_stop`.
Once the `review_app` job is successfully finished, it will trigger the
`stop_review_app` job based on what is defined under `when`. In this case we
set it up to `manual` so it will need a [manual action](#manual-actions) via
GitLab's web interface in order to run.
The `stop_review_app` job is **required** to have the following keywords defined:
- `when` - [reference](#when)
- `environment:name`
- `environment:action`
- `stage` should be the same as the `review_app` in order for the environment
to stop automatically when the branch is deleted
### Dynamic environments
> **Notes:**
>
> - [Introduced][ce-6323] in GitLab 8.12 and GitLab Runner 1.6.
> - The `$CI_ENVIRONMENT_SLUG` was [introduced][ce-7983] in GitLab 8.15.
> - The `name` and `url` parameters can use any of the defined CI variables,
> including predefined, secure variables and `.gitlab-ci.yml` [`variables`](#variables).
> You however cannot use variables defined under `script`.
For example:
```yaml
deploy as review app:
stage: deploy
script: make deploy
environment:
name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com/
```
The `deploy as review app` job will be marked as deployment to dynamically
create the `review/$CI_COMMIT_REF_NAME` environment, where `$CI_COMMIT_REF_NAME`
is an [environment variable][variables] set by the Runner. The
`$CI_ENVIRONMENT_SLUG` variable is based on the environment name, but suitable
for inclusion in URLs. In this case, if the `deploy as review app` job was run
in a branch named `pow`, this environment would be accessible with an URL like
`https://review-pow.example.com/`.
This of course implies that the underlying server which hosts the application
is properly configured.
The common use case is to create dynamic environments for branches and use them
as Review Apps. You can see a simple example using Review Apps at
<https://gitlab.com/gitlab-examples/review-apps-nginx/>.
## `cache`
> **Notes:**
>
> - Introduced in GitLab Runner v0.7.0.
> - `cache` can be set globally and per-job.
> - From GitLab 9.0, caching is enabled and shared between pipelines and jobs
> by default.
> - From GitLab 9.2, caches are restored before [artifacts](#artifacts).
TIP: **Learn more:**
Read how caching works and find out some good practices in the
[caching dependencies documentation](../caching/index.md).
`cache` is used to specify a list of files and directories which should be
cached between jobs. You can only use paths that are within the project
workspace.
If `cache` is defined outside the scope of jobs, it means it is set
globally and all jobs will use that definition.
### `cache:paths`
Use the `paths` directive to choose which files or directories will be cached.
Wildcards can be used as well.
Cache all files in `binaries` that end in `.apk` and the `.config` file:
```yaml
rspec:
script: test
cache:
paths:
- binaries/*.apk
- .config
```
Locally defined cache overrides globally defined options. The following `rspec`
job will cache only `binaries/`:
```yaml
cache:
paths:
- my/files
rspec:
script: test
cache:
key: rspec
paths:
- binaries/
```
Note that since cache is shared between jobs, if you're using different
paths for different jobs, you should also set a different **cache:key**
otherwise cache content can be overwritten.
### `cache:key`
> Introduced in GitLab Runner v1.0.0.
Since the cache is shared between jobs, if you're using different
paths for different jobs, you should also set a different `cache:key`
otherwise cache content can be overwritten.
The `key` directive allows you to define the affinity of caching between jobs,
allowing to have a single cache for all jobs, cache per-job, cache per-branch
or any other way that fits your workflow. This way, you can fine tune caching,
allowing you to cache data between different jobs or even different branches.
The `cache:key` variable can use any of the
[predefined variables](../variables/README.md), and the default key, if not
set, is just literal `default` which means everything is shared between each
pipelines and jobs by default, starting from GitLab 9.0.
NOTE: **Note:**
The `cache:key` variable cannot contain the `/` character, or the equivalent
URI-encoded `%2F`; a value made only of dots (`.`, `%2E`) is also forbidden.
For example, to enable per-branch caching:
```yaml
cache:
key: "$CI_COMMIT_REF_SLUG"
paths:
- binaries/
```
If you use **Windows Batch** to run your shell scripts you need to replace
`$` with `%`:
```yaml
cache:
key: "%CI_COMMIT_REF_SLUG%"
paths:
- binaries/
```
### `cache:untracked`
Set `untracked: true` to cache all files that are untracked in your Git
repository:
```yaml
rspec:
script: test
cache:
untracked: true
```
Cache all Git untracked files and files in `binaries`:
```yaml
rspec:
script: test
cache:
untracked: true
paths:
- binaries/
```
### `cache:policy`
> Introduced in GitLab 9.4.
The default behaviour of a caching job is to download the files at the start of
execution, and to re-upload them at the end. This allows any changes made by the
job to be persisted for future runs, and is known as the `pull-push` cache
policy.
If you know the job doesn't alter the cached files, you can skip the upload step
by setting `policy: pull` in the job specification. Typically, this would be
twinned with an ordinary cache job at an earlier stage to ensure the cache
is updated from time to time:
```yaml
stages:
- setup
- test
prepare:
stage: setup
cache:
key: gems
paths:
- vendor/bundle
script:
- bundle install --deployment
rspec:
stage: test
cache:
key: gems
paths:
- vendor/bundle
policy: pull
script:
- bundle exec rspec ...
```
This helps to speed up job execution and reduce load on the cache server,
especially when you have a large number of cache-using jobs executing in
parallel.
Additionally, if you have a job that unconditionally recreates the cache without
reference to its previous contents, you can use `policy: push` in that job to
skip the download step.
## `artifacts`
> **Notes:**
>
> - Introduced in GitLab Runner v0.7.0 for non-Windows platforms.
> - Windows support was added in GitLab Runner v.1.0.0.
> - From GitLab 9.2, caches are restored before artifacts.
> - Not all executors are [supported](https://docs.gitlab.com/runner/executors/#compatibility-chart).
> - Job artifacts are only collected for successful jobs by default.
`artifacts` is used to specify a list of files and directories which should be
attached to the job after success.
The artifacts will be sent to GitLab after the job finishes successfully and will
be available for download in the GitLab UI.
[Read more about artifacts.](../../user/project/pipelines/job_artifacts.md)
### `artifacts:paths`
You can only use paths that are within the project workspace. To pass artifacts
between different jobs, see [dependencies](#dependencies).
Send all files in `binaries` and `.config`:
```yaml
artifacts:
paths:
- binaries/
- .config
```
To disable artifact passing, define the job with empty [dependencies](#dependencies):
```yaml
job:
stage: build
script: make build
dependencies: []
```
You may want to create artifacts only for tagged releases to avoid filling the
build server storage with temporary build artifacts.
Create artifacts only for tags (`default-job` will not create artifacts):
```yaml
default-job:
script:
- mvn test -U
except:
- tags
release-job:
script:
- mvn package -U
artifacts:
paths:
- target/*.war
only:
- tags
```
### `artifacts:name`
> Introduced in GitLab 8.6 and GitLab Runner v1.1.0.
The `name` directive allows you to define the name of the created artifacts
archive. That way, you can have a unique name for every archive which could be
useful when you'd like to download the archive from GitLab. The `artifacts:name`
variable can make use of any of the [predefined variables](../variables/README.md).
The default name is `artifacts`, which becomes `artifacts.zip` when downloaded.
NOTE: **Note:**
If your branch-name contains forward slashes
(e.g. `feature/my-feature`) it is advised to use `$CI_COMMIT_REF_SLUG`
instead of `$CI_COMMIT_REF_NAME` for proper naming of the artifact.
To create an archive with a name of the current job:
```yaml
job:
artifacts:
name: "$CI_JOB_NAME"
paths:
- binaries/
```
To create an archive with a name of the current branch or tag including only
the binaries directory:
```yaml
job:
artifacts:
name: "$CI_COMMIT_REF_NAME"
paths:
- binaries/
```
To create an archive with a name of the current job and the current branch or
tag including only the binaries directory:
```yaml
job:
artifacts:
name: "$CI_JOB_NAME-$CI_COMMIT_REF_NAME"
paths:
- binaries/
```
To create an archive with a name of the current [stage](#stages) and branch name:
```yaml
job:
artifacts:
name: "$CI_JOB_STAGE-$CI_COMMIT_REF_NAME"
paths:
- binaries/
```
---
If you use **Windows Batch** to run your shell scripts you need to replace
`$` with `%`:
```yaml
job:
artifacts:
name: "%CI_JOB_STAGE%-%CI_COMMIT_REF_NAME%"
paths:
- binaries/
```
If you use **Windows PowerShell** to run your shell scripts you need to replace
`$` with `$env:`:
```yaml
job:
artifacts:
name: "$env:CI_JOB_STAGE-$env:CI_COMMIT_REF_NAME"
paths:
- binaries/
```
### `artifacts:untracked`
`artifacts:untracked` is used to add all Git untracked files as artifacts (along
to the paths defined in `artifacts:paths`).
NOTE: **Note:**
To exclude the folders/files which should not be a part of `untracked` just
add them to `.gitignore`.
Send all Git untracked files:
```yaml
artifacts:
untracked: true
```
Send all Git untracked files and files in `binaries`:
```yaml
artifacts:
untracked: true
paths:
- binaries/
```
### `artifacts:when`
> Introduced in GitLab 8.9 and GitLab Runner v1.3.0.
`artifacts:when` is used to upload artifacts on job failure or despite the
failure.
`artifacts:when` can be set to one of the following values:
1. `on_success` - upload artifacts only when the job succeeds. This is the default.
1. `on_failure` - upload artifacts only when the job fails.
1. `always` - upload artifacts regardless of the job status.
To upload artifacts only when job fails:
```yaml
job:
artifacts:
when: on_failure
```
### `artifacts:expire_in`
> Introduced in GitLab 8.9 and GitLab Runner v1.3.0.
`expire_in` allows you to specify how long artifacts should live before they
expire and therefore deleted, counting from the time they are uploaded and
stored on GitLab. If the expiry time is not defined, it defaults to the
[instance wide setting](../../user/admin_area/settings/continuous_integration.md#default-artifacts-expiration)
(30 days by default, forever on GitLab.com).
You can use the **Keep** button on the job page to override expiration and
keep artifacts forever.
After their expiry, artifacts are deleted hourly by default (via a cron job),
and are not accessible anymore.
The value of `expire_in` is an elapsed time in seconds, unless a unit is
provided. Examples of parsable values:
- '42'
- '3 mins 4 sec'
- '2 hrs 20 min'
- '2h20min'
- '6 mos 1 day'
- '47 yrs 6 mos and 4d'
- '3 weeks and 2 days'
To expire artifacts 1 week after being uploaded:
```yaml
job:
artifacts:
expire_in: 1 week
```
### `artifacts:reports`
> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/20390) in
GitLab 11.2. Requires GitLab Runner 11.2 and above.
The `reports` keyword is used for collecting test reports from jobs and
exposing them in GitLab's UI (merge requests, pipeline views). Read how to use
this with [JUnit reports](#artifactsreportsjunit).
NOTE: **Note:**
The test reports are collected regardless of the job results (success or failure).
You can use [`artifacts:expire_in`](#artifacts-expire_in) to set up an expiration
date for their artifacts.
NOTE: **Note:**
If you also want the ability to browse the report output files, include the
[`artifacts:paths`](#artifactspaths) keyword.
#### `artifacts:reports:junit`
> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/20390) in
GitLab 11.2. Requires GitLab Runner 11.2 and above.
The `junit` report collects [JUnit XML files](https://www.ibm.com/support/knowledgecenter/en/SSQ2R2_14.1.0/com.ibm.rsar.analysis.codereview.cobol.doc/topics/cac_useresults_junit.html)
as artifacts. Although JUnit was originally developed in Java, there are many
[third party ports](https://en.wikipedia.org/wiki/JUnit#Ports) for other
languages like JavaScript, Python, Ruby, etc.
See [JUnit test reports](../junit_test_reports.md) for more details and examples.
Below is an example of collecting a JUnit XML file from Ruby's RSpec test tool:
```yaml
rspec:
stage: test
script:
- bundle install
- rspec --format RspecJunitFormatter --out rspec.xml
artifacts:
reports:
junit: rspec.xml
```
The collected JUnit reports will be uploaded to GitLab as an artifact and will
be automatically shown in merge requests.
NOTE: **Note:**
In case the JUnit tool you use exports to multiple XML files, you can specify
multiple test report paths within a single job and they will be automatically
concatenated into a single file. Use a filename pattern (`junit: rspec-*.xml`),
an array of filenames (`junit: [rspec-1.xml, rspec-2.xml, rspec-3.xml]`), or a
combination thereof (`junit: [rspec.xml, test-results/TEST-*.xml]`).
#### `artifacts:reports:codequality` **[STARTER]**
> Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.
The `codequality` report collects [CodeQuality issues](https://docs.gitlab.com/ee/user/project/merge_requests/code_quality.html)
as artifacts.
The collected Code Quality report will be uploaded to GitLab as an artifact and will
be automatically shown in merge requests.
#### `artifacts:reports:sast` **[ULTIMATE]**
> Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.
The `sast` report collects [SAST vulnerabilities](https://docs.gitlab.com/ee/user/project/merge_requests/sast.html)
as artifacts.
The collected SAST report will be uploaded to GitLab as an artifact and will
be automatically shown in merge requests, pipeline view and provide data for security
dashboards.
#### `artifacts:reports:dependency_scanning` **[ULTIMATE]**
> Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.
The `dependency_scanning` report collects [Dependency Scanning vulnerabilities](https://docs.gitlab.com/ee/user/project/merge_requests/dependency_scanning.html)
as artifacts.
The collected Dependency Scanning report will be uploaded to GitLab as an artifact and will
be automatically shown in merge requests, pipeline view and provide data for security
dashboards.
#### `artifacts:reports:container_scanning` **[ULTIMATE]**
> Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.
The `container_scanning` report collects [Container Scanning vulnerabilities](https://docs.gitlab.com/ee/user/project/merge_requests/container_scanning.html)
as artifacts.
The collected Container Scanning report will be uploaded to GitLab as an artifact and will
be automatically shown in merge requests, pipeline view and provide data for security
dashboards.
#### `artifacts:reports:dast` **[ULTIMATE]**
> Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.
The `dast` report collects [DAST vulnerabilities](https://docs.gitlab.com/ee/user/project/merge_requests/dast.html)
as artifacts.
The collected DAST report will be uploaded to GitLab as an artifact and will
be automatically shown in merge requests, pipeline view and provide data for security
dashboards.
#### `artifacts:reports:license_management` **[ULTIMATE]**
> Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.
The `license_management` report collects [Licenses](https://docs.gitlab.com/ee/user/project/merge_requests/license_management.html)
as artifacts.
The collected License Management report will be uploaded to GitLab as an artifact and will
be automatically shown in merge requests, pipeline view and provide data for security
dashboards.
#### `artifacts:reports:performance` **[PREMIUM]**
> Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.
The `performance` report collects [Performance metrics](https://docs.gitlab.com/ee//user/project/merge_requests/browser_performance_testing.html)
as artifacts.
The collected Performance report will be uploaded to GitLab as an artifact and will
be automatically shown in merge requests.
## `dependencies`
> Introduced in GitLab 8.6 and GitLab Runner v1.1.1.
This feature should be used in conjunction with [`artifacts`](#artifacts) and
allows you to define the artifacts to pass between different jobs.
Note that `artifacts` from all previous [stages](#stages) are passed by default.
To use this feature, define `dependencies` in context of the job and pass
a list of all previous jobs from which the artifacts should be downloaded.
You can only define jobs from stages that are executed before the current one.
An error will be shown if you define jobs from the current stage or next ones.
Defining an empty array will skip downloading any artifacts for that job.
The status of the previous job is not considered when using `dependencies`, so
if it failed or it is a manual job that was not run, no error occurs.
---
In the following example, we define two jobs with artifacts, `build:osx` and
`build:linux`. When the `test:osx` is executed, the artifacts from `build:osx`
will be downloaded and extracted in the context of the build. The same happens
for `test:linux` and artifacts from `build:linux`.
The job `deploy` will download artifacts from all previous jobs because of
the [stage](#stages) precedence:
```yaml
build:osx:
stage: build
script: make build:osx
artifacts:
paths:
- binaries/
build:linux:
stage: build
script: make build:linux
artifacts:
paths:
- binaries/
test:osx:
stage: test
script: make test:osx
dependencies:
- build:osx
test:linux:
stage: test
script: make test:linux
dependencies:
- build:linux
deploy:
stage: deploy
script: make deploy
```
### When a dependent job will fail
> Introduced in GitLab 10.3.
If the artifacts of the job that is set as a dependency have been
[expired](#artifacts-expire_in) or
[erased](../../user/project/pipelines/job_artifacts.md#erasing-artifacts), then
the dependent job will fail.
NOTE: **Note:**
You can ask your administrator to
[flip this switch](../../administration/job_artifacts.md#validation-for-dependencies)
and bring back the old behavior.
## `coverage`
> [Introduced][ce-7447] in GitLab 8.17.
`coverage` allows you to configure how code coverage will be extracted from the
job output.
Regular expressions are the only valid kind of value expected here. So, using
surrounding `/` is mandatory in order to consistently and explicitly represent
a regular expression string. You must escape special characters if you want to
match them literally.
A simple example:
```yaml
job1:
script: rspec
coverage: '/Code coverage: \d+\.\d+/'
```
## `retry`
> [Introduced][ce-12909] in GitLab 9.5.
> [Behaviour expanded](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/21758)
> in GitLab 11.5 to control on which failures to retry.
`retry` allows you to configure how many times a job is going to be retried in
case of a failure.
When a job fails and has `retry` configured, it is going to be processed again
up to the amount of times specified by the `retry` keyword.
If `retry` is set to 2, and a job succeeds in a second run (first retry), it won't be retried
again. `retry` value has to be a positive integer, equal or larger than 0, but
lower or equal to 2 (two retries maximum, three runs in total).
A simple example to retry in all failure cases:
```yaml
test:
script: rspec
retry: 2
```
By default, a job will be retried on all failure cases. To have a better control
on which failures to retry, `retry` can be a hash with the following keys:
- `max`: The maximum number of retries.
- `when`: The failure cases to retry.
To retry only runner system failures at maximum two times:
```yaml
test:
script: rspec
retry:
max: 2
when: runner_system_failure
```
If there is another failure, other than a runner system failure, the job will
not be retried.
To retry on multiple failure cases, `when` can also be an array of failures:
```yaml
test:
script: rspec
retry:
max: 2
when:
- runner_system_failure
- stuck_or_timeout_failure
```
Possible values for `when` are:
<!--
Please make sure to update `RETRY_WHEN_IN_DOCUMENTATION` array in
`spec/lib/gitlab/ci/config/entry/retry_spec.rb` if you change any of
the documented values below. The test there makes sure that all documented
values are really valid as a config option and therefore should always
stay in sync with this documentation.
-->
- `always`: Retry on any failure (default).
- `unknown_failure`: Retry when the failure reason is unknown.
- `script_failure`: Retry when the script failed.
- `api_failure`: Retry on API failure.
- `stuck_or_timeout_failure`: Retry when the job got stuck or timed out.
- `runner_system_failure`: Retry if there was a runner system failure (e.g. setting up the job failed).
- `missing_dependency_failure`: Retry if a dependency was missing.
- `runner_unsupported`: Retry if the runner was unsupported.
## `parallel`
> [Introduced](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/22631) in GitLab 11.5.
`parallel` allows you to configure how many instances of a job to run in
parallel. This value has to be greater than or equal to two (2) and less than or equal to 50.
This creates N instances of the same job that run in parallel. They're named
sequentially from `job_name 1/N` to `job_name N/N`.
For every job, `CI_NODE_INDEX` and `CI_NODE_TOTAL` [environment variables](../variables/README.html#predefined-variables-environment-variables) are set.
A simple example:
```yaml
test:
script: rspec
parallel: 5
```
## `include`
> Introduced in [GitLab Premium](https://about.gitlab.com/pricing/) 10.5.
> Available for Starter, Premium and Ultimate since 10.6.
> Behaviour expanded in GitLab 10.8 to allow more flexible overriding.
> [Moved](https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/21603)
to GitLab Core in 11.4
> In GitLab 11.7, support for [including GitLab-supplied templates directly](https://gitlab.com/gitlab-org/gitlab-ce/issues/53445) and support for [including templates from another repository](https://gitlab.com/gitlab-org/gitlab-ce/issues/53903) was added.
Using the `include` keyword, you can allow the inclusion of external YAML files.
In the following example, the content of `.before-script-template.yml` will be
automatically fetched and evaluated along with the content of `.gitlab-ci.yml`:
```yaml
# Content of https://gitlab.com/awesome-project/raw/master/.before-script-template.yml
before_script:
- apt-get update -qq && apt-get install -y -qq sqlite3 libsqlite3-dev nodejs
- gem install bundler --no-document
- bundle install --jobs $(nproc) "${FLAGS[@]}"
```
```yaml
# Content of .gitlab-ci.yml
include: 'https://gitlab.com/awesome-project/raw/master/.before-script-template.yml'
rspec:
script:
- bundle exec rspec
```
NOTE: **Note:**
`include` requires the external YAML files to have the extensions `.yml` or `.yaml`.
The external file will not be included if the extension is missing.
You can include your extra YAML file either as a single string or
as an array of multiple values. You can also use full paths or
relative URLs. The following examples are both valid:
```yaml
# Single string
include: '/templates/.after-script-template.yml'
```
```yaml
# Single string
include:
file: '/templates/.after-script-template.yml'
```
```yaml
# Array
include:
- 'https://gitlab.com/awesome-project/raw/master/.before-script-template.yml'
- '/templates/.after-script-template.yml'
```
```yaml
# Array mixed syntax
include:
- 'https://gitlab.com/awesome-project/raw/master/.before-script-template.yml'
- '/templates/.after-script-template.yml'
- template: Auto-DevOps.gitlab-ci.yml
```
```yaml
# Array
include:
- remote: 'https://gitlab.com/awesome-project/raw/master/.before-script-template.yml'
- local: '/templates/.after-script-template.yml'
- template: Auto-DevOps.gitlab-ci.yml
```
---
`include` supports four types of files:
- **local** to the same repository, referenced by using full paths in the same
repository, with `/` being the root directory. For example:
```yaml
# Within the repository
include: '/templates/.gitlab-ci-template.yml'
```
Or using:
```yaml
# Within the repository
include:
local: '/templates/.gitlab-ci-template.yml'
```
NOTE: **Note:**
You can only use files that are currently tracked by Git on the same branch
your configuration file is. In other words, when using a **local file**, make
sure that both `.gitlab-ci.yml` and the local file are on the same branch.
NOTE: **Note:**
We don't support the inclusion of local files through Git submodules paths.
- **file** from another repository, referenced by using full paths in the same
repository, with `/` being the root directory. For example:
```yaml
include:
project: 'my-group/my-project'
file: '/templates/.gitlab-ci-template.yml'
```
You can also specify `ref:`. The default `ref:` is the `HEAD` of the project:
```yaml
include:
- project: 'my-group/my-project'
ref: master
file: '/templates/.gitlab-ci-template.yml'
- project: 'my-group/my-project'
ref: v1.0.0
file: '/templates/.gitlab-ci-template.yml'
- project: 'my-group/my-project'
ref: 787123b47f14b552955ca2786bc9542ae66fee5b # git sha
file: '/templates/.gitlab-ci-template.yml'
```
- **remote** in a different location, accessed using HTTP/HTTPS, referenced
using the full URL. For example:
```yaml
# File sourced from outside repository
include: 'https://gitlab.com/awesome-project/raw/master/.gitlab-ci-template.yml'
```
Or using:
```yaml
# File sourced from outside repository
include:
remote: 'https://gitlab.com/awesome-project/raw/master/.gitlab-ci-template.yml'
```
NOTE: **Note:**
The remote file must be publicly accessible through a simple GET request, as we don't support authentication schemas in the remote URL.
NOTE: **Note:**
In order to include files from another repository inside your local network,
you may need to enable the **Allow requests to the local network from hooks and services** checkbox
located in the **Settings > Network > Outbound requests** section within the **Admin area**.
- **template** included with GitLab. For example:
```yaml
# File sourced from GitLab's template collection
include:
template: Auto-DevOps.gitlab-ci.yml
```
NOTE: **Note:**
Templates included this way are sourced from [lib/gitlab/ci/templates](https://gitlab.com/gitlab-org/gitlab-ce/tree/master/lib/gitlab/ci/templates).
---
Since GitLab 10.8 we are now deep merging the files defined in `include`
with those in `.gitlab-ci.yml`. Files defined by `include` are always
evaluated first and merged with the content of `.gitlab-ci.yml`, no
matter the position of the `include` keyword. You can take advantage of
merging to customize and override details in included CI
configurations with local definitions.
NOTE: **Note:**
The recursive includes are not supported, meaning your external files
should not use the `include` keyword, as it will be ignored.
The following example shows specific YAML-defined variables and details of the
`production` job from an include file being customized in `.gitlab-ci.yml`.
```yaml
# Content of https://company.com/autodevops-template.yml
variables:
POSTGRES_USER: user
POSTGRES_PASSWORD: testing_password
POSTGRES_DB: $CI_ENVIRONMENT_SLUG
production:
stage: production
script:
- install_dependencies
- deploy
environment:
name: production
url: https://$CI_PROJECT_PATH_SLUG.$AUTO_DEVOPS_DOMAIN
only:
- master
```
```yaml
# Content of .gitlab-ci.yml
include: 'https://company.com/autodevops-template.yml'
image: alpine:latest
variables:
POSTGRES_USER: root
POSTGRES_PASSWORD: secure_password
stages:
- build
- test
- production
production:
environment:
url: https://domain.com
```
In this case, the variables `POSTGRES_USER` and `POSTGRES_PASSWORD` along
with the environment url of the `production` job defined in
`autodevops-template.yml` have been overridden by new values defined in
`.gitlab-ci.yml`.
The merging lets you extend and override dictionary mappings, but
you cannot add or modify items to an included array. For example, to add
an additional item to the production job script, you must repeat the
existing script items.
```yaml
# Content of https://company.com/autodevops-template.yml
production:
stage: production
script:
- install_dependencies
- deploy
```
```yaml
# Content of .gitlab-ci.yml
include: 'https://company.com/autodevops-template.yml'
stages:
- production
production:
script:
- install_dependencies
- deploy
- notify_owner
```
In this case, if `install_dependencies` and `deploy` were not repeated in
`.gitlab-ci.yml`, they would not be part of the script for the `production`
job in the combined CI configuration.
NOTE: **Note:**
We currently do not support using YAML aliases across different YAML files
sourced by `include`. You must only refer to aliases in the same file. Instead
of using YAML anchors you can use [`extends` keyword](#extends).
## `variables`
> Introduced in GitLab Runner v0.5.0.
NOTE: **Note:**
Integers (as well as strings) are legal both for variable's name and value.
Floats are not legal and cannot be used.
GitLab CI/CD allows you to define variables inside `.gitlab-ci.yml` that are
then passed in the job environment. They can be set globally and per-job.
When the `variables` keyword is used on a job level, it overrides the global
YAML variables and predefined ones.
They are stored in the Git repository and are meant to store non-sensitive
project configuration, for example:
```yaml
variables:
DATABASE_URL: "postgres://postgres@postgres/my_database"
```
These variables can be later used in all executed commands and scripts.
The YAML-defined variables are also set to all created service containers,
thus allowing to fine tune them.
Except for the user defined variables, there are also the ones [set up by the
Runner itself](../variables/README.md#predefined-variables-environment-variables).
One example would be `CI_COMMIT_REF_NAME` which has the value of
the branch or tag name for which project is built. Apart from the variables
you can set in `.gitlab-ci.yml`, there are also the so called
[Variables](../variables/README.md#variables)
which can be set in GitLab's UI.
[Learn more about variables and their priority.][variables]
### Git strategy
> Introduced in GitLab 8.9 as an experimental feature. May change or be removed
completely in future releases. `GIT_STRATEGY=none` requires GitLab Runner
v1.7+.
You can set the `GIT_STRATEGY` used for getting recent application code, either
globally or per-job in the [`variables`](#variables) section. If left
unspecified, the default from project settings will be used.
There are three possible values: `clone`, `fetch`, and `none`.
`clone` is the slowest option. It clones the repository from scratch for every
job, ensuring that the project workspace is always pristine.
```yaml
variables:
GIT_STRATEGY: clone
```
`fetch` is faster as it re-uses the project workspace (falling back to `clone`
if it doesn't exist). `git clean` is used to undo any changes made by the last
job, and `git fetch` is used to retrieve commits made since the last job ran.
```yaml
variables:
GIT_STRATEGY: fetch
```
`none` also re-uses the project workspace, but skips all Git operations
(including GitLab Runner's pre-clone script, if present). It is mostly useful
for jobs that operate exclusively on artifacts (e.g., `deploy`). Git repository
data may be present, but it is certain to be out of date, so you should only
rely on files brought into the project workspace from cache or artifacts.
```yaml
variables:
GIT_STRATEGY: none
```
### Git submodule strategy
> Requires GitLab Runner v1.10+.
The `GIT_SUBMODULE_STRATEGY` variable is used to control if / how Git
submodules are included when fetching the code before a build. You can set them
globally or per-job in the [`variables`](#variables) section.
There are three possible values: `none`, `normal`, and `recursive`:
- `none` means that submodules will not be included when fetching the project
code. This is the default, which matches the pre-v1.10 behavior.
- `normal` means that only the top-level submodules will be included. It is
equivalent to:
```
git submodule sync
git submodule update --init
```
- `recursive` means that all submodules (including submodules of submodules)
will be included. This feature needs Git v1.8.1 and later. When using a
GitLab Runner with an executor not based on Docker, make sure the Git version
meets that requirement. It is equivalent to:
```
git submodule sync --recursive
git submodule update --init --recursive
```
Note that for this feature to work correctly, the submodules must be configured
(in `.gitmodules`) with either:
- the HTTP(S) URL of a publicly-accessible repository, or
- a relative path to another repository on the same GitLab server. See the
[Git submodules](../git_submodules.md) documentation.
### Git checkout
> Introduced in GitLab Runner 9.3
The `GIT_CHECKOUT` variable can be used when the `GIT_STRATEGY` is set to either
`clone` or `fetch` to specify whether a `git checkout` should be run. If not
specified, it defaults to true. You can set them globally or per-job in the
[`variables`](#variables) section.
If set to `false`, the Runner will:
- when doing `fetch` - update the repository and leave working copy on
the current revision,
- when doing `clone` - clone the repository and leave working copy on the
default branch.
Having this setting set to `true` will mean that for both `clone` and `fetch`
strategies the Runner will checkout the working copy to a revision related
to the CI pipeline:
```yaml
variables:
GIT_STRATEGY: clone
GIT_CHECKOUT: "false"
script:
- git checkout master
- git merge $CI_BUILD_REF_NAME
```
### Job stages attempts
> Introduced in GitLab, it requires GitLab Runner v1.9+.
You can set the number for attempts the running job will try to execute each
of the following stages:
| Variable | Description |
|-------------------------------- |-------------|
| **GET_SOURCES_ATTEMPTS** | Number of attempts to fetch sources running a job |
| **ARTIFACT_DOWNLOAD_ATTEMPTS** | Number of attempts to download artifacts running a job |
| **RESTORE_CACHE_ATTEMPTS** | Number of attempts to restore the cache running a job |
The default is one single attempt.
Example:
```yaml
variables:
GET_SOURCES_ATTEMPTS: 3
```
You can set them globally or per-job in the [`variables`](#variables) section.
### Shallow cloning
> Introduced in GitLab 8.9 as an experimental feature. May change in future
releases or be removed completely.
You can specify the depth of fetching and cloning using `GIT_DEPTH`. This allows
shallow cloning of the repository which can significantly speed up cloning for
repositories with a large number of commits or old, large binaries. The value is
passed to `git fetch` and `git clone`.
>**Note:**
If you use a depth of 1 and have a queue of jobs or retry
jobs, jobs may fail.
Since Git fetching and cloning is based on a ref, such as a branch name, Runners
can't clone a specific commit SHA. If there are multiple jobs in the queue, or
you are retrying an old job, the commit to be tested needs to be within the
Git history that is cloned. Setting too small a value for `GIT_DEPTH` can make
it impossible to run these old commits. You will see `unresolved reference` in
job logs. You should then reconsider changing `GIT_DEPTH` to a higher value.
Jobs that rely on `git describe` may not work correctly when `GIT_DEPTH` is
set since only part of the Git history is present.
To fetch or clone only the last 3 commits:
```yaml
variables:
GIT_DEPTH: "3"
```
You can set it globally or per-job in the [`variables`](#variables) section.
## Special YAML features
It's possible to use special YAML features like anchors (`&`), aliases (`*`)
and map merging (`<<`), which will allow you to greatly reduce the complexity
of `.gitlab-ci.yml`.
Read more about the various [YAML features](https://learnxinyminutes.com/docs/yaml/).
### Hidden keys (jobs)
> Introduced in GitLab 8.6 and GitLab Runner v1.1.1.
If you want to temporarily 'disable' a job, rather than commenting out all the
lines where the job is defined:
```
#hidden_job:
# script:
# - run test
```
you can instead start its name with a dot (`.`) and it will not be processed by
GitLab CI. In the following example, `.hidden_job` will be ignored:
```yaml
.hidden_job:
script:
- run test
```
Use this feature to ignore jobs, or use the
[special YAML features](#special-yaml-features) and transform the hidden keys
into templates.
### Anchors
> Introduced in GitLab 8.6 and GitLab Runner v1.1.1.
YAML has a handy feature called 'anchors', which lets you easily duplicate
content across your document. Anchors can be used to duplicate/inherit
properties, and is a perfect example to be used with [hidden keys](#hidden-keys-jobs)
to provide templates for your jobs.
The following example uses anchors and map merging. It will create two jobs,
`test1` and `test2`, that will inherit the parameters of `.job_template`, each
having their own custom `script` defined:
```yaml
.job_template: &job_definition # Hidden key that defines an anchor named 'job_definition'
image: ruby:2.1
services:
- postgres
- redis
test1:
<<: *job_definition # Merge the contents of the 'job_definition' alias
script:
- test1 project
test2:
<<: *job_definition # Merge the contents of the 'job_definition' alias
script:
- test2 project
```
`&` sets up the name of the anchor (`job_definition`), `<<` means "merge the
given hash into the current one", and `*` includes the named anchor
(`job_definition` again). The expanded version looks like this:
```yaml
.job_template:
image: ruby:2.1
services:
- postgres
- redis
test1:
image: ruby:2.1
services:
- postgres
- redis
script:
- test1 project
test2:
image: ruby:2.1
services:
- postgres
- redis
script:
- test2 project
```
Let's see another one example. This time we will use anchors to define two sets
of services. This will create two jobs, `test:postgres` and `test:mysql`, that
will share the `script` directive defined in `.job_template`, and the `services`
directive defined in `.postgres_services` and `.mysql_services` respectively:
```yaml
.job_template: &job_definition
script:
- test project
.postgres_services:
services: &postgres_definition
- postgres
- ruby
.mysql_services:
services: &mysql_definition
- mysql
- ruby
test:postgres:
<<: *job_definition
services: *postgres_definition
test:mysql:
<<: *job_definition
services: *mysql_definition
```
The expanded version looks like this:
```yaml
.job_template:
script:
- test project
.postgres_services:
services:
- postgres
- ruby
.mysql_services:
services:
- mysql
- ruby
test:postgres:
script:
- test project
services:
- postgres
- ruby
test:mysql:
script:
- test project
services:
- mysql
- ruby
```
You can see that the hidden keys are conveniently used as templates.
## Triggers
Triggers can be used to force a rebuild of a specific branch, tag or commit,
with an API call.
[Read more in the triggers documentation.](../triggers/README.md)
## Skipping jobs
If your commit message contains `[ci skip]` or `[skip ci]`, using any
capitalization, the commit will be created but the pipeline will be skipped.
Alternatively, one can pass the `ci.skip` [Git push option][push-option] if
using Git 2.10 or newer:
```
$ git push -o ci.skip
```
## Validate the .gitlab-ci.yml
Each instance of GitLab CI has an embedded debug tool called Lint, which validates the
content of your `.gitlab-ci.yml` files. You can find the Lint under the page `ci/lint` of your
project namespace (e.g, `http://gitlab-example.com/gitlab-org/project-123/-/ci/lint`)
## Using reserved keywords
If you get validation error when using specific values (e.g., `true` or `false`),
try to quote them, or change them to a different form (e.g., `/bin/true`).
## Examples
See a [list of examples](../examples/README.md "CI/CD examples") for using
GitLab CI/CD with various languages.
[ce-6323]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/6323
[ce-6669]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/6669
[ce-7983]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7983
[ce-7447]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/7447
[ce-12909]: https://gitlab.com/gitlab-org/gitlab-ce/merge_requests/12909
[environment]: ../environments.md "CI/CD environments"
[schedules]: ../../user/project/pipelines/schedules.md "Pipelines schedules"
[variables]: ../variables/README.md "CI/CD variables"
[push-option]: https://git-scm.com/docs/git-push#git-push--oltoptiongt