20 KiB
type |
---|
concepts, howto |
Building Docker images with GitLab CI/CD
GitLab CI/CD allows you to use Docker Engine to build and test docker-based projects.
One of the new trends in Continuous Integration/Deployment is to:
- Create an application image.
- Run tests against the created image.
- Push image to a remote registry.
- Deploy to a server from the pushed image.
It's also useful when your application already has the Dockerfile
that can be
used to create and test an image:
docker build -t my-image dockerfiles/
docker run my-image /script/to/run/tests
docker tag my-image my-registry:5000/my-image
docker push my-registry:5000/my-image
This requires special configuration of GitLab Runner to enable docker
support
during jobs.
Runner Configuration
There are three methods to enable the use of docker build
and docker run
during jobs; each with their own tradeoffs.
Use shell executor
The simplest approach is to install GitLab Runner in shell
execution mode.
GitLab Runner then executes job scripts as the gitlab-runner
user.
-
Install GitLab Runner.
-
During GitLab Runner installation select
shell
as method of executing job scripts or use command:sudo gitlab-runner register -n \ --url https://gitlab.com/ \ --registration-token REGISTRATION_TOKEN \ --executor shell \ --description "My Runner"
-
Install Docker Engine on server.
For more information how to install Docker Engine on different systems checkout the Supported installations.
-
Add
gitlab-runner
user todocker
group:sudo usermod -aG docker gitlab-runner
-
Verify that
gitlab-runner
has access to Docker:sudo -u gitlab-runner -H docker info
You can now verify that everything works by adding
docker info
to.gitlab-ci.yml
:before_script: - docker info build_image: script: - docker build -t my-docker-image . - docker run my-docker-image /script/to/run/tests
-
You can now use
docker
command (and installdocker-compose
if needed).
NOTE: Note:
By adding gitlab-runner
to the docker
group you are effectively granting gitlab-runner
full root permissions.
For more information please read On Docker security: docker
group considered harmful.
Use docker-in-docker executor
The second approach is to use the special docker-in-docker (dind)
Docker image with all tools installed
(docker
) and run the job script in context of that
image in privileged mode.
NOTE: Note: docker-compose
is not part of docker-in-docker (dind). In case you'd like to use docker-compose
in your CI builds, please follow the installation instructions for docker-compose provided by docker.
In order to do that, follow the steps:
-
Install GitLab Runner.
-
Register GitLab Runner from the command line to use
docker
andprivileged
mode:sudo gitlab-runner register -n \ --url https://gitlab.com/ \ --registration-token REGISTRATION_TOKEN \ --executor docker \ --description "My Docker Runner" \ --docker-image "docker:stable" \ --docker-privileged
The above command will register a new Runner to use the special
docker:stable
image which is provided by Docker. Notice that it's using theprivileged
mode to start the build and service containers. If you want to use docker-in-docker mode, you always have to useprivileged = true
in your Docker containers.The above command will create a
config.toml
entry similar to this:[[runners]] url = "https://gitlab.com/" token = TOKEN executor = "docker" [runners.docker] tls_verify = false image = "docker:stable" privileged = true disable_cache = false volumes = ["/cache"] [runners.cache] Insecure = false
-
You can now use
docker
in the build script (note the inclusion of thedocker:dind
service):image: docker:stable variables: # When using dind service we need to instruct docker, to talk with the # daemon started inside of the service. The daemon is available with # a network connection instead of the default /var/run/docker.sock socket. # # The 'docker' hostname is the alias of the service container as described at # https://docs.gitlab.com/ee/ci/docker/using_docker_images.html#accessing-the-services # # Note that if you're using the Kubernetes executor, the variable should be set to # tcp://localhost:2375/ because of how the Kubernetes executor connects services # to the job container # DOCKER_HOST: tcp://localhost:2375/ # # For non-Kubernetes executors, we use tcp://docker:2375/ DOCKER_HOST: tcp://docker:2375/ # When using dind, it's wise to use the overlayfs driver for # improved performance. DOCKER_DRIVER: overlay2 services: - docker:dind before_script: - docker info build: stage: build script: - docker build -t my-docker-image . - docker run my-docker-image /script/to/run/tests
Docker-in-Docker works well, and is the recommended configuration, but it is not without its own challenges:
-
By enabling
--docker-privileged
, you are effectively disabling all of the security mechanisms of containers and exposing your host to privilege escalation which can lead to container breakout. For more information, check out the official Docker documentation on Runtime privilege and Linux capabilities. -
When using docker-in-docker, each job is in a clean environment without the past history. Concurrent jobs work fine because every build gets it's own instance of Docker engine so they won't conflict with each other. But this also means jobs can be slower because there's no caching of layers.
-
By default,
docker:dind
uses--storage-driver vfs
which is the slowest form offered. To use a different driver, see Using the overlayfs driver. -
Since the
docker:dind
container and the runner container don't share their root filesystem, the job's working directory can be used as a mount point for children containers. For example, if you have files you want to share with a child container, you may create a subdirectory under/builds/$CI_PROJECT_PATH
and use it as your mount point (for a more thorough explanation, check issue #41227):variables: MOUNT_POINT: /builds/$CI_PROJECT_PATH/mnt script: - mkdir -p "$MOUNT_POINT" - docker run -v "$MOUNT_POINT:/mnt" my-docker-image
An example project using this approach can be found here: https://gitlab.com/gitlab-examples/docker.
Use Docker socket binding
The third approach is to bind-mount /var/run/docker.sock
into the container so that docker is available in the context of that image.
In order to do that, follow the steps:
-
Install GitLab Runner.
-
Register GitLab Runner from the command line to use
docker
and share/var/run/docker.sock
:sudo gitlab-runner register -n \ --url https://gitlab.com/ \ --registration-token REGISTRATION_TOKEN \ --executor docker \ --description "My Docker Runner" \ --docker-image "docker:stable" \ --docker-volumes /var/run/docker.sock:/var/run/docker.sock
The above command will register a new Runner to use the special
docker:stable
image which is provided by Docker. Notice that it's using the Docker daemon of the Runner itself, and any containers spawned by docker commands will be siblings of the Runner rather than children of the runner. This may have complications and limitations that are unsuitable for your workflow.The above command will create a
config.toml
entry similar to this:[[runners]] url = "https://gitlab.com/" token = REGISTRATION_TOKEN executor = "docker" [runners.docker] tls_verify = false image = "docker:stable" privileged = false disable_cache = false volumes = ["/var/run/docker.sock:/var/run/docker.sock", "/cache"] [runners.cache] Insecure = false
-
You can now use
docker
in the build script (note that you don't need to include thedocker:dind
service as when using the Docker in Docker executor):image: docker:stable before_script: - docker info build: stage: build script: - docker build -t my-docker-image . - docker run my-docker-image /script/to/run/tests
While the above method avoids using Docker in privileged mode, you should be aware of the following implications:
-
By sharing the docker daemon, you are effectively disabling all the security mechanisms of containers and exposing your host to privilege escalation which can lead to container breakout. For example, if a project ran
docker rm -f $(docker ps -a -q)
it would remove the GitLab Runner containers. -
Concurrent jobs may not work; if your tests create containers with specific names, they may conflict with each other.
-
Sharing files and directories from the source repo into containers may not work as expected since volume mounting is done in the context of the host machine, not the build container. For example:
docker run --rm -t -i -v $(pwd)/src:/home/app/src test-image:latest run_app_tests
Making docker-in-docker builds faster with Docker layer caching
When using docker-in-docker, Docker will download all layers of your image every
time you create a build. Recent versions of Docker (Docker 1.13 and above) can
use a pre-existing image as a cache during the docker build
step, considerably
speeding up the build process.
How Docker caching works
When running docker build
, each command in Dockerfile
results in a layer.
These layers are kept around as a cache and can be reused if there haven't been
any changes. Change in one layer causes all subsequent layers to be recreated.
You can specify a tagged image to be used as a cache source for the docker build
command by using the --cache-from
argument. Multiple images can be specified
as a cache source by using multiple --cache-from
arguments. Keep in mind that
any image that's used with the --cache-from
argument must first be pulled
(using docker pull
) before it can be used as a cache source.
Using Docker caching
Here's a simple .gitlab-ci.yml
file showing how Docker caching can be utilized:
image: docker:stable
services:
- docker:dind
variables:
DOCKER_HOST: tcp://docker:2375
DOCKER_DRIVER: overlay2
before_script:
- docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY
build:
stage: build
script:
- docker pull $CI_REGISTRY_IMAGE:latest || true
- docker build --cache-from $CI_REGISTRY_IMAGE:latest --tag $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA --tag $CI_REGISTRY_IMAGE:latest .
- docker push $CI_REGISTRY_IMAGE:$CI_COMMIT_SHA
- docker push $CI_REGISTRY_IMAGE:latest
The steps in the script
section for the build
stage can be summed up to:
- The first command tries to pull the image from the registry so that it can be
used as a cache for the
docker build
command. - The second command builds a Docker image using the pulled image as a
cache (notice the
--cache-from $CI_REGISTRY_IMAGE:latest
argument) if available, and tags it. - The last two commands push the tagged Docker images to the container registry so that they may also be used as cache for subsequent builds.
Using the OverlayFS driver
NOTE: Note:
The shared Runners on GitLab.com use the overlay2
driver by default.
By default, when using docker:dind
, Docker uses the vfs
storage driver which
copies the filesystem on every run. This is a disk-intensive operation
which can be avoided if a different driver is used, for example overlay2
.
Requirements
-
Make sure a recent kernel is used, preferably
>= 4.2
. -
Check whether the
overlay
module is loaded:sudo lsmod | grep overlay
If you see no result, then it isn't loaded. To load it use:
sudo modprobe overlay
If everything went fine, you need to make sure module is loaded on reboot. On Ubuntu systems, this is done by editing
/etc/modules
. Just add the following line into it:overlay
Use driver per project
You can enable the driver for each project individually by editing the project's .gitlab-ci.yml
:
variables:
DOCKER_DRIVER: overlay2
Use driver for every project
To enable the driver for every project, you can set the environment variable for every build by adding environment
in the [[runners]]
section of config.toml
:
environment = ["DOCKER_DRIVER=overlay2"]
If you're running multiple Runners you will have to modify all configuration files.
Notes:
- More information about the Runner configuration is available in the Runner documentation.
- For more information about using OverlayFS with Docker, you can read Use the OverlayFS storage driver.
Using the GitLab Container Registry
Notes:
- This feature requires GitLab 8.8 and GitLab Runner 1.2.
- Starting from GitLab 8.12, if you have 2FA enabled in your account, you need to pass a personal access token instead of your password in order to login to GitLab's Container Registry.
Once you've built a Docker image, you can push it up to the built-in GitLab Container Registry. Some things you should be aware of:
- You must log in to the container registry
before running commands. You can do this in the
before_script
if multiple jobs depend on it. - Using
docker build --pull
fetches any changes to base images before building just in case your cache is stale. It takes slightly longer, but means you don’t get stuck without security patches to base images. - Doing an explicit
docker pull
before eachdocker run
fetches the latest image that was just built. This is especially important if you are using multiple runners that cache images locally. Using the git SHA in your image tag makes this less necessary since each job will be unique and you shouldn't ever have a stale image. However, it's still possible to have a stale image if you re-build a given commit after a dependency has changed. - You don't want to build directly to
latest
tag in case there are multiple jobs happening simultaneously.
Authenticating to the Container Registry
There are three ways to authenticate to the Container Registry via GitLab CI/CD and depend on the visibility of your project.
For all projects, mostly suitable for public ones:
-
Using the special
$CI_REGISTRY_USER
variable: The user specified by this variable is created for you in order to push to the Registry connected to your project. Its password is automatically set with the$CI_REGISTRY_PASSWORD
variable. This allows you to automate building and deploying your Docker images and has read/write access to the Registry. This is ephemeral, so it's only valid for one job. You can use the following example as-is:docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY
For private and internal projects:
-
Using a personal access token: You can create and use a personal access token in case your project is private:
- For read (pull) access, the scope should be
read_registry
. - For read/write (pull/push) access, use
api
.
Replace the
<username>
and<access_token>
in the following example:docker login -u <username> -p <access_token> $CI_REGISTRY
- For read (pull) access, the scope should be
-
Using the GitLab Deploy Token: You can create and use a special deploy token with your private projects. It provides read-only (pull) access to the Registry. Once created, you can use the special environment variables, and GitLab CI/CD will fill them in for you. You can use the following example as-is:
docker login -u $CI_DEPLOY_USER -p $CI_DEPLOY_PASSWORD $CI_REGISTRY
Container Registry examples
If you're using docker-in-docker on your Runners, this is how your .gitlab-ci.yml
could look like:
build:
image: docker:stable
services:
- docker:dind
variables:
DOCKER_HOST: tcp://docker:2375
DOCKER_DRIVER: overlay2
stage: build
script:
- docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY
- docker build -t $CI_REGISTRY/group/project/image:latest .
- docker push $CI_REGISTRY/group/project/image:latest
You can also make use of other variables to avoid hardcoding:
services:
- docker:dind
variables:
DOCKER_HOST: tcp://docker:2375
DOCKER_DRIVER: overlay2
IMAGE_TAG: $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG
before_script:
- docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY
build:
stage: build
script:
- docker build -t $IMAGE_TAG .
- docker push $IMAGE_TAG
Here, $CI_REGISTRY_IMAGE
would be resolved to the address of the registry tied
to this project. Since $CI_COMMIT_REF_NAME
resolves to the branch or tag name,
and your branch-name can contain forward slashes (e.g., feature/my-feature), it is
safer to use $CI_COMMIT_REF_SLUG
as the image tag. This is due to that image tags
cannot contain forward slashes. We also declare our own variable, $IMAGE_TAG
,
combining the two to save us some typing in the script
section.
Here's a more elaborate example that splits up the tasks into 4 pipeline stages,
including two tests that run in parallel. The build
is stored in the container
registry and used by subsequent stages, downloading the image
when needed. Changes to master
also get tagged as latest
and deployed using
an application-specific deploy script:
image: docker:stable
services:
- docker:dind
stages:
- build
- test
- release
- deploy
variables:
DOCKER_HOST: tcp://docker:2375
DOCKER_DRIVER: overlay2
CONTAINER_TEST_IMAGE: $CI_REGISTRY_IMAGE:$CI_COMMIT_REF_SLUG
CONTAINER_RELEASE_IMAGE: $CI_REGISTRY_IMAGE:latest
before_script:
- docker login -u $CI_REGISTRY_USER -p $CI_REGISTRY_PASSWORD $CI_REGISTRY
build:
stage: build
script:
- docker build --pull -t $CONTAINER_TEST_IMAGE .
- docker push $CONTAINER_TEST_IMAGE
test1:
stage: test
script:
- docker pull $CONTAINER_TEST_IMAGE
- docker run $CONTAINER_TEST_IMAGE /script/to/run/tests
test2:
stage: test
script:
- docker pull $CONTAINER_TEST_IMAGE
- docker run $CONTAINER_TEST_IMAGE /script/to/run/another/test
release-image:
stage: release
script:
- docker pull $CONTAINER_TEST_IMAGE
- docker tag $CONTAINER_TEST_IMAGE $CONTAINER_RELEASE_IMAGE
- docker push $CONTAINER_RELEASE_IMAGE
only:
- master
deploy:
stage: deploy
script:
- ./deploy.sh
only:
- master