42 lines
1.7 KiB
Ruby
42 lines
1.7 KiB
Ruby
module Statistics
|
|
module StatisticalTest
|
|
class ChiSquaredTest
|
|
def self.chi_statistic(expected, observed)
|
|
# If the expected is a number, we asumme that all expected observations
|
|
# has the same probability to occur, hence we expect to see the same number
|
|
# of expected observations per each observed value
|
|
statistic = if expected.is_a? Numeric
|
|
observed.reduce(0) do |memo, observed_value|
|
|
up = (observed_value - expected) ** 2
|
|
memo += (up/expected.to_f)
|
|
end
|
|
else
|
|
expected.each_with_index.reduce(0) do |memo, (expected_value, index)|
|
|
up = (observed[index] - expected_value) ** 2
|
|
memo += (up/expected_value.to_f)
|
|
end
|
|
end
|
|
|
|
[statistic, observed.size - 1]
|
|
end
|
|
|
|
def self.goodness_of_fit(alpha, expected, observed)
|
|
chi_score, df = *self.chi_statistic(expected, observed) # Splat array result
|
|
|
|
return if chi_score.nil? || df.nil?
|
|
|
|
probability = Distribution::ChiSquared.new(df).cumulative_function(chi_score)
|
|
p_value = 1 - probability
|
|
|
|
# According to https://stats.stackexchange.com/questions/29158/do-you-reject-the-null-hypothesis-when-p-alpha-or-p-leq-alpha
|
|
# We can assume that if p_value <= alpha, we can safely reject the null hypothesis, ie. accept the alternative hypothesis.
|
|
{ probability: probability,
|
|
p_value: p_value,
|
|
alpha: alpha,
|
|
null: alpha < p_value,
|
|
alternative: p_value <= alpha,
|
|
confidence_level: 1 - alpha }
|
|
end
|
|
end
|
|
end
|
|
end
|