.. | ||
img | ||
gitlab_ci_yaml.md | ||
includes.md | ||
README.md | ||
script.md | ||
visualization.md |
stage | group | info | type |
---|---|---|---|
Verify | Continuous Integration | To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments | reference |
Keyword reference for the .gitlab-ci.yml file
This document lists the configuration options for your GitLab .gitlab-ci.yml
file.
- For a quick introduction to GitLab CI/CD, follow the quick start guide.
- For a collection of examples, see GitLab CI/CD Examples.
- To view a large
.gitlab-ci.yml
file used in an enterprise, see the.gitlab-ci.yml
file forgitlab
.
When you are editing your .gitlab-ci.yml
file, you can validate it with the
CI Lint tool.
Job keywords
A job is defined as a list of keywords that define the job's behavior.
The keywords available for jobs are:
Keyword | Description |
---|---|
script |
Shell script that is executed by a runner. |
after_script |
Override a set of commands that are executed after job. |
allow_failure |
Allow job to fail. A failed job does not cause the pipeline to fail. |
artifacts |
List of files and directories to attach to a job on success. Also available: artifacts:paths , artifacts:exclude , artifacts:expose_as , artifacts:name , artifacts:untracked , artifacts:when , artifacts:expire_in , and artifacts:reports . |
before_script |
Override a set of commands that are executed before job. |
cache |
List of files that should be cached between subsequent runs. Also available: cache:paths , cache:key , cache:untracked , cache:when , and cache:policy . |
coverage |
Code coverage settings for a given job. |
dependencies |
Restrict which artifacts are passed to a specific job by providing a list of jobs to fetch artifacts from. |
environment |
Name of an environment to which the job deploys. Also available: environment:name , environment:url , environment:on_stop , environment:auto_stop_in , and environment:action . |
except |
Limit when jobs are not created. Also available: except:refs , except:kubernetes , except:variables , and except:changes . |
extends |
Configuration entries that this job inherits from. |
image |
Use Docker images. Also available: image:name and image:entrypoint . |
include |
Include external YAML files. Also available: include:local , include:file , include:template , and include:remote . |
interruptible |
Defines if a job can be canceled when made redundant by a newer run. |
only |
Limit when jobs are created. Also available: only:refs , only:kubernetes , only:variables , and only:changes . |
pages |
Upload the result of a job to use with GitLab Pages. |
parallel |
How many instances of a job should be run in parallel. |
release |
Instructs the runner to generate a Release object. |
resource_group |
Limit job concurrency. |
retry |
When and how many times a job can be auto-retried in case of a failure. |
rules |
List of conditions to evaluate and determine selected attributes of a job, and whether or not it's created. |
services |
Use Docker services images. Also available: services:name , services:alias , services:entrypoint , and services:command . |
stage |
Defines a job stage (default: test ). |
tags |
List of tags that are used to select a runner. |
timeout |
Define a custom job-level timeout that takes precedence over the project-wide setting. |
trigger |
Defines a downstream pipeline trigger. |
variables |
Define job variables on a job level. |
when |
When to run job. Also available: when:manual and when:delayed . |
Unavailable names for jobs
Each job must have a unique name, but there are a few reserved keywords
that
can't be used as job names:
image
services
stages
types
before_script
after_script
variables
cache
include
Reserved keywords
If you get a validation error when you use specific values (for example, true
or false
), try to:
- Quote them.
- Change them to a different form. For example,
/bin/true
.
Global keywords
Some keywords are defined at a global level and affect all jobs in the pipeline.
Global defaults
Some keywords can be set globally as the default for all jobs with the
default:
keyword. Default keywords can then be overridden by job-specific
configuration.
The following job keywords can be defined inside a default:
block:
In the following example, the ruby:2.5
image is set as the default for all
jobs except the rspec 2.6
job, which uses the ruby:2.6
image:
default:
image: ruby:2.5
rspec:
script: bundle exec rspec
rspec 2.6:
image: ruby:2.6
script: bundle exec rspec
inherit
Introduced in GitLab 12.9.
You can disable inheritance of globally defined defaults
and variables with the inherit:
keyword.
To enable or disable the inheritance of all default:
or variables:
keywords, use:
default: true
ordefault: false
variables: true
orvariables: false
To inherit only a subset of default:
keywords or variables:
, specify what
you wish to inherit. Anything not listed is not inherited. Use
one of the following formats:
inherit:
default: [keyword1, keyword2]
variables: [VARIABLE1, VARIABLE2]
Or:
inherit:
default:
- keyword1
- keyword2
variables:
- VARIABLE1
- VARIABLE2
In the example below:
rubocop
:- inherits: Nothing.
rspec
:- inherits: the default
image
and theWEBHOOK_URL
variable. - does not inherit: the default
before_script
and theDOMAIN
variable.
- inherits: the default
capybara
:- inherits: the default
before_script
andimage
. - does not inherit: the
DOMAIN
andWEBHOOK_URL
variables.
- inherits: the default
karma
:- inherits: the default
image
andbefore_script
, and theDOMAIN
variable. - does not inherit:
WEBHOOK_URL
variable.
- inherits: the default
default:
image: 'ruby:2.4'
before_script:
- echo Hello World
variables:
DOMAIN: example.com
WEBHOOK_URL: https://my-webhook.example.com
rubocop:
inherit:
default: false
variables: false
script: bundle exec rubocop
rspec:
inherit:
default: [image]
variables: [WEBHOOK_URL]
script: bundle exec rspec
capybara:
inherit:
variables: false
script: bundle exec capybara
karma:
inherit:
default: true
variables: [DOMAIN]
script: karma
stages
Use stages
to define stages that contain groups of jobs. stages
is defined globally
for the pipeline. Use stage
in a job to define which stage the job is
part of.
The order of the stages
items defines the execution order for jobs:
- Jobs in the same stage run in parallel.
- Jobs in the next stage run after the jobs from the previous stage complete successfully.
For example:
stages:
- build
- test
- deploy
- All jobs in
build
execute in parallel. - If all jobs in
build
succeed, thetest
jobs execute in parallel. - If all jobs in
test
succeed, thedeploy
jobs execute in parallel. - If all jobs in
deploy
succeed, the pipeline is marked aspassed
.
If any job fails, the pipeline is marked as failed
and jobs in later stages do not
start. Jobs in the current stage are not stopped and continue to run.
If no stages
are defined in the .gitlab-ci.yml
file, then build
, test
and deploy
are the default pipeline stages.
If a job does not specify a stage
, the job is assigned the test
stage.
To make a job start earlier and ignore the stage order, use
the needs
keyword.
workflow:rules
Introduced in GitLab 12.5
The top-level workflow:
keyword determines whether or not a pipeline is created.
It accepts a single rules:
keyword that is similar to rules:
defined in jobs.
Use it to define what can trigger a new pipeline.
You can use the workflow:rules
templates to import
a preconfigured workflow: rules
entry.
workflow: rules
accepts these keywords:
if
: Check this rule to determine when to run a pipeline.when
: Specify what to do when theif
rule evaluates to true.- To run a pipeline, set to
always
. - To prevent pipelines from running, set to
never
.
- To run a pipeline, set to
When no rules evaluate to true, the pipeline does not run.
Some example if
clauses for workflow: rules
:
Example rules | Details |
---|---|
if: '$CI_PIPELINE_SOURCE == "merge_request_event"' |
Control when merge request pipelines run. |
if: '$CI_PIPELINE_SOURCE == "push"' |
Control when both branch pipelines and tag pipelines run. |
if: $CI_COMMIT_TAG |
Control when tag pipelines run. |
if: $CI_COMMIT_BRANCH |
Control when branch pipelines run. |
See the common if
clauses for rules
for more examples.
For example, in the following configuration, pipelines run for all push
events (changes to
branches and new tags). Pipelines for push events with -wip
in the commit message
don't run, because they are set to when: never
. Pipelines for schedules or merge requests
don't run either, because no rules evaluate to true for them:
workflow:
rules:
- if: $CI_COMMIT_MESSAGE =~ /-wip$/
when: never
- if: '$CI_PIPELINE_SOURCE == "push"'
This example has strict rules, and pipelines do not run in any other case.
Alternatively, all of the rules can be when: never
, with a final
when: always
rule. Pipelines that match the when: never
rules do not run.
All other pipeline types run:
workflow:
rules:
- if: '$CI_PIPELINE_SOURCE == "schedule"'
when: never
- if: '$CI_PIPELINE_SOURCE == "push"'
when: never
- when: always
This example prevents pipelines for schedules or push
(branches and tags) pipelines.
The final when: always
rule runs all other pipeline types, including merge
request pipelines.
If your rules match both branch pipelines and merge request pipelines, duplicate pipelines can occur.
workflow:rules
templates
Introduced in GitLab 13.0.
We provide templates that set up workflow: rules
for common scenarios. These templates help prevent duplicate pipelines.
The Branch-Pipelines
template
makes your pipelines run for branches and tags.
Branch pipeline status is displayed in merge requests that use the branch as a source. However, this pipeline type does not support any features offered by Merge Request Pipelines, like Pipelines for Merge Results or Merge Trains. Use this template if you are intentionally avoiding those features.
It is included as follows:
include:
- template: 'Workflows/Branch-Pipelines.gitlab-ci.yml'
The MergeRequest-Pipelines
template
makes your pipelines run for the default branch (usually master
), tags, and
all types of merge request pipelines. Use this template if you use any of the
the Pipelines for Merge Requests features, as mentioned
above.
It is included as follows:
include:
- template: 'Workflows/MergeRequest-Pipelines.gitlab-ci.yml'
include
- Introduced in GitLab Premium 10.5.
- Available for Starter, Premium, and Ultimate in GitLab 10.6 and later.
- Moved to GitLab Free in 11.4.
Use the include
keyword to include external YAML files in your CI/CD configuration.
You can break down one long gitlab-ci.yml
file into multiple files to increase readability,
or reduce duplication of the same configuration in multiple places.
You can also store template files in a central repository and include
them in projects.
include
requires the external YAML file to have the extensions .yml
or .yaml
,
otherwise the external file is not included.
You can't use YAML anchors across different YAML files sourced by include
.
You can only refer to anchors in the same file. Instead of YAML anchors, you can
use the extends
keyword.
include
supports the following inclusion methods:
Keyword | Method |
---|---|
local |
Include a file from the local project repository. |
file |
Include a file from a different project repository. |
remote |
Include a file from a remote URL. Must be publicly accessible. |
template |
Include templates that are provided by GitLab. |
The .gitlab-ci.yml
file configuration included by all methods is evaluated when the pipeline is created.
The configuration is a snapshot in time and persisted in the database. Any changes to
the referenced .gitlab-ci.yml
file configuration is not reflected in GitLab until the next pipeline is created.
The files defined by include
are:
- Deep merged with those in the
.gitlab-ci.yml
file. - Always evaluated first and merged with the content of the
.gitlab-ci.yml
file, regardless of the position of theinclude
keyword.
NOTE:
Use merging to customize and override included CI/CD configurations with local
configurations. Local configurations in the .gitlab-ci.yml
file override included configurations.
Variables with include
(FREE SELF)
- Introduced in GitLab 13.8.
- Feature flag removed in GitLab 13.9.
You can use some predefined variables in include
sections
in your .gitlab-ci.yml
file:
include:
project: '$CI_PROJECT_PATH'
file: '.compliance-gitlab-ci.yml'
For an example of how you can include these predefined variables, and their impact on CI jobs, see the following CI/CD variable demo.
include:local
include:local
includes a file that is in the same repository as the .gitlab-ci.yml
file.
It's referenced with full paths relative to the root directory (/
).
If you use include:local
, make sure that both the .gitlab-ci.yml
file and the local file
are on the same branch.
You can't include local files through Git submodules paths.
All nested includes are executed in the scope of the same project, so it's possible to use local, project, remote, or template includes.
Example:
include:
- local: '/templates/.gitlab-ci-template.yml'
This can be defined as a short local include:
include: '.gitlab-ci-production.yml'
Use local includes instead of symbolic links.
include:file
Introduced in GitLab 11.7.
To include files from another private project on the same GitLab instance,
use include:file
. You can use include:file
in combination with include:project
only.
The included file is referenced with a full path, relative to the root directory (/
). For example:
include:
- project: 'my-group/my-project'
file: '/templates/.gitlab-ci-template.yml'
You can also specify a ref
. If not specified, it defaults to the HEAD
of the project:
include:
- project: 'my-group/my-project'
ref: master
file: '/templates/.gitlab-ci-template.yml'
- project: 'my-group/my-project'
ref: v1.0.0
file: '/templates/.gitlab-ci-template.yml'
- project: 'my-group/my-project'
ref: 787123b47f14b552955ca2786bc9542ae66fee5b # Git SHA
file: '/templates/.gitlab-ci-template.yml'
All nested includes are executed in the scope of the target project. You can use local (relative to target project), project, remote, or template includes.
Multiple files from a project
- Introduced in GitLab 13.6.
- Feature flag removed in GitLab 13.8.
You can include multiple files from the same project:
include:
- project: 'my-group/my-project'
ref: master
file:
- '/templates/.builds.yml'
- '/templates/.tests.yml'
include:remote
Use include:remote
with a full URL to include a file from a different location.
The remote file must be publicly accessible by an HTTP/HTTPS GET
request, because
authentication in the remote URL is not supported. For example:
include:
- remote: 'https://gitlab.com/example-project/-/raw/master/.gitlab-ci.yml'
All nested includes execute without context as a public user,
so you can only include
public projects or templates.
include:template
Introduced in GitLab 11.7.
Use include:template
to include .gitlab-ci.yml
templates that are
shipped with GitLab.
For example:
# File sourced from the GitLab template collection
include:
- template: Auto-DevOps.gitlab-ci.yml
Multiple include:template
files:
include:
- template: Android-Fastlane.gitlab-ci.yml
- template: Auto-DevOps.gitlab-ci.yml
All nested includes are executed only with the permission of the user, so it's possible to use project, remote or template includes.
Nested includes
Introduced in GitLab 11.9.
Use nested includes to compose a set of includes.
You can have up to 100 includes, but you can't have duplicate includes.
In GitLab 12.4 and later, the time limit to resolve all files is 30 seconds.
Additional includes
examples
There is a list of additional includes
examples available.
Keyword details
The following are detailed explanations for keywords used to configure CI/CD pipelines.
image
Used to specify a Docker image to use for the job.
For:
- Usage examples, see Define
image
andservices
from.gitlab-ci.yml
. - Detailed usage information, refer to Docker integration documentation.
image:name
An extended Docker configuration option.
For more information, see Available settings for image
.
image:entrypoint
An extended Docker configuration option.
For more information, see Available settings for image
.
services
Used to specify a service Docker image, linked to a base image specified in image
.
For:
- Usage examples, see Define
image
andservices
from.gitlab-ci.yml
. - Detailed usage information, refer to Docker integration documentation.
- For example services, see GitLab CI/CD Services.
services:name
An extended Docker configuration option.
For more information, see Available settings for services
.
services:alias
An extended Docker configuration option.
For more information, see Available settings for services
.
services:entrypoint
An extended Docker configuration option.
For more information, see Available settings for services
.
services:command
An extended Docker configuration option.
For more information, see Available settings for services
.
script
script
is the only required keyword that a job needs. It's a shell script
that is executed by the runner. For example:
job:
script: "bundle exec rspec"
You can use YAML anchors with script
.
This keyword can also contain several commands in an array:
job:
script:
- uname -a
- bundle exec rspec
Sometimes, script
commands must be wrapped in single or double quotes.
For example, commands that contain a colon (:
) must be wrapped in single quotes ('
).
The YAML parser needs to interpret the text as a string rather than
a "key: value" pair.
For example, this script uses a colon:
job:
script:
- curl --request POST --header 'Content-Type: application/json' "https://gitlab/api/v4/projects"
To be considered valid YAML, you must wrap the entire command in single quotes. If
the command already uses single quotes, you should change them to double quotes ("
)
if possible:
job:
script:
- 'curl --request POST --header "Content-Type: application/json" "https://gitlab/api/v4/projects"'
You can verify the syntax is valid with the CI Lint tool.
Be careful when using these special characters as well:
{
,}
,[
,]
,,
,&
,*
,#
,?
,|
,-
,<
,>
,=
,!
,%
,@
,`
.
If any of the script commands return an exit code other than zero, the job fails and further commands are not executed. Store the exit code in a variable to avoid this behavior:
job:
script:
- false || exit_code=$?
- if [ $exit_code -ne 0 ]; then echo "Previous command failed"; fi;
before_script
Use before_script
to define an array of commands that should run before each job,
but after artifacts are restored.
Scripts specified in before_script
are concatenated with any scripts specified
in the main script
, and executed together in a single shell.
It's possible to overwrite a globally defined before_script
if you define it in a job:
default:
before_script:
- echo "Execute this script in all jobs that don't already have a before_script section."
job1:
script:
- echo "This script executes after the global before_script."
job:
before_script:
- echo "Execute this script instead of the global before_script."
script:
- echo "This script executes after the job's `before_script`"
You can use YAML anchors with before_script
.
after_script
Use after_script
to define an array of commands that run after each job,
including failed jobs.
If a job times out or is cancelled, the after_script
commands are not executed.
Support for executing after_script
commands for timed-out or cancelled jobs
is planned.
Scripts specified in after_script
are executed in a new shell, separate from any
before_script
or script
scripts. As a result, they:
- Have a current working directory set back to the default.
- Have no access to changes done by scripts defined in
before_script
orscript
, including:- Command aliases and variables exported in
script
scripts. - Changes outside of the working tree (depending on the runner executor), like
software installed by a
before_script
orscript
script.
- Command aliases and variables exported in
- Have a separate timeout, which is hard coded to 5 minutes. See the related issue for details.
- Don't affect the job's exit code. If the
script
section succeeds and theafter_script
times out or fails, the job exits with code0
(Job Succeeded
).
default:
after_script:
- echo "Execute this script in all jobs that don't already have an after_script section."
job1:
script:
- echo "This script executes first. When it completes, the global after_script executes."
job:
script:
- echo "This script executes first. When it completes, the job's `after_script` executes."
after_script:
- echo "Execute this script instead of the global after_script."
You can use YAML anchors with after_script
.
Script syntax
You can use special syntax in script
sections to:
- Split long commands into multiline commands.
- Use color codes to make job logs easier to review.
- Create custom collapsible sections to simplify job log output.
stage
stage
is defined per-job and relies on stages
, which is defined
globally. Use stage
to define which stage a job runs in, and jobs of the same
stage
are executed in parallel (subject to certain conditions). For example:
stages:
- build
- test
- deploy
job 0:
stage: .pre
script: make something useful before build stage
job 1:
stage: build
script: make build dependencies
job 2:
stage: build
script: make build artifacts
job 3:
stage: test
script: make test
job 4:
stage: deploy
script: make deploy
job 5:
stage: .post
script: make something useful at the end of pipeline
Use your own runners
When you use your own runners, each runner runs only one job at a time by default. Jobs can run in parallel if they run on different runners.
If you have only one runner, jobs can run in parallel if the runner's
concurrent
setting
is greater than 1
.
.pre
and .post
Introduced in GitLab 12.4.
The following stages are available to every pipeline:
.pre
, which is guaranteed to always be the first stage in a pipeline..post
, which is guaranteed to always be the last stage in a pipeline.
User-defined stages are executed after .pre
and before .post
.
A pipeline is not created if all jobs are in .pre
or .post
stages.
The order of .pre
and .post
can't be changed, even if defined out of order in the .gitlab-ci.yml
file.
For example, the following are equivalent configuration:
-
Configured in order:
stages: - .pre - a - b - .post
-
Configured out of order:
stages: - a - .pre - b - .post
-
Not explicitly configured:
stages: - a - b
extends
Introduced in GitLab 11.3.
Use extends
to reuse configuration sections. It's an alternative to YAML anchors
and is a little more flexible and readable. You can use extends
to reuse configuration
from included configuration files.
In this example, the rspec
job uses the configuration from the .tests
template job.
GitLab:
- Performs a reverse deep merge based on the keys.
- Merges the
.tests
content with therspec
job. - Doesn't merge the values of the keys.
.tests:
script: rake test
stage: test
only:
refs:
- branches
rspec:
extends: .tests
script: rake rspec
only:
variables:
- $RSPEC
The result is this rspec
job:
rspec:
script: rake rspec
stage: test
only:
refs:
- branches
variables:
- $RSPEC
.tests
in this example is a hidden job, but it's
possible to extend configuration from regular jobs as well.
extends
supports multi-level inheritance. You should avoid using more than three levels,
but you can use as many as eleven. The following example has two levels of inheritance:
.tests:
only:
- pushes
.rspec:
extends: .tests
script: rake rspec
rspec 1:
variables:
RSPEC_SUITE: '1'
extends: .rspec
rspec 2:
variables:
RSPEC_SUITE: '2'
extends: .rspec
spinach:
extends: .tests
script: rake spinach
In GitLab 12.0 and later, it's also possible to use multiple parents for
extends
.
Merge details
extends
is able to merge hashes but not arrays.
The algorithm used for merge is "closest scope wins", so
keys from the last member always override anything defined on other
levels. For example:
.only-important:
variables:
URL: "http://my-url.internal"
IMPORTANT_VAR: "the details"
only:
- master
- stable
tags:
- production
script:
- echo "Hello world!"
.in-docker:
variables:
URL: "http://docker-url.internal"
tags:
- docker
image: alpine
rspec:
variables:
GITLAB: "is-awesome"
extends:
- .only-important
- .in-docker
script:
- rake rspec
The result is this rspec
job:
rspec:
variables:
URL: "http://docker-url.internal"
IMPORTANT_VAR: "the details"
GITLAB: "is-awesome"
only:
- master
- stable
tags:
- docker
image: alpine
script:
- rake rspec
Note that in the example above:
- The
variables
sections merge, butURL: "http://docker-url.internal"
overwritesURL: "http://my-url.internal"
. tags: ['docker']
overwritestags: ['production']
.script
does not merge, butscript: ['rake rspec']
overwritesscript: ['echo "Hello world!"']
. You can use YAML anchors to merge arrays.
Use extends
and include
together
To reuse configuration from different configuration files,
combine extends
and include
.
In this example, a script
is defined in the included.yml
file.
Then, in the .gitlab-ci.yml
file, you use extends
to refer
to the contents of the script
:
-
included.yml
:.template: script: - echo Hello!
-
.gitlab-ci.yml
:include: included.yml useTemplate: image: alpine extends: .template
rules
Introduced in GitLab 12.3.
Use the rules
keyword to include or exclude jobs in pipelines.
Rules are evaluated in order until the first match. When matched, the job is either included or excluded from the pipeline, depending on the configuration. If included, the job also has certain attributes added to it.
rules
replaces only/except
and they can't be used together
in the same job. If you configure one job to use both keywords, the linter returns a
key may not be used with rules
error.
Rules attributes
The job attributes you can use with rules
are:
when
: If not defined, defaults towhen: on_success
.- If used as
when: delayed
,start_in
is also required.
- If used as
allow_failure
: If not defined, defaults toallow_failure: false
.variables
: If not defined, uses the variables defined elsewhere.
If a rule evaluates to true, and when
has any value except never
, the job is included in the pipeline.
For example:
docker build:
script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:
- if: '$CI_COMMIT_BRANCH == "master"'
when: delayed
start_in: '3 hours'
allow_failure: true
Rules clauses
Available rule clauses are:
Clause | Description |
---|---|
if |
Add or exclude jobs from a pipeline by evaluating an if statement. Similar to only:variables . |
changes |
Add or exclude jobs from a pipeline based on what files are changed. Same as only:changes . |
exists |
Add or exclude jobs from a pipeline based on the presence of specific files. |
Rules are evaluated in order until a match is found. If a match is found, the attributes are checked to see if the job should be added to the pipeline. If no attributes are defined, the defaults are:
when: on_success
allow_failure: false
The job is added to the pipeline:
- If a rule matches and has
when: on_success
,when: delayed
orwhen: always
. - If no rules match, but the last clause is
when: on_success
,when: delayed
orwhen: always
(with no rule).
The job is not added to the pipeline:
- If no rules match, and there is no standalone
when: on_success
,when: delayed
orwhen: always
. - If a rule matches, and has
when: never
as the attribute.
This example uses if
to strictly limit when jobs run:
job:
script: echo "Hello, Rules!"
rules:
- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
when: manual
allow_failure: true
- if: '$CI_PIPELINE_SOURCE == "schedule"'
- If the pipeline is for a merge request, the first rule matches, and the job
is added to the merge request pipeline
with attributes of:
when: manual
(manual job)allow_failure: true
(the pipeline continues running even if the manual job is not run)
- If the pipeline is not for a merge request, the first rule doesn't match, and the second rule is evaluated.
- If the pipeline is a scheduled pipeline, the second rule matches, and the job
is added to the scheduled pipeline. No attributes were defined, so it is added
with:
when: on_success
(default)allow_failure: false
(default)
- In all other cases, no rules match, so the job is not added to any other pipeline.
Alternatively, you can define a set of rules to exclude jobs in a few cases, but run them in all other cases:
job:
script: echo "Hello, Rules!"
rules:
- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
when: never
- if: '$CI_PIPELINE_SOURCE == "schedule"'
when: never
- when: on_success
- If the pipeline is for a merge request, the job is not be added to the pipeline.
- If the pipeline is a scheduled pipeline, the job is not be added to the pipeline.
- In all other cases, the job is added to the pipeline, with
when: on_success
.
WARNING:
If you use a when:
clause as the final rule (not including when: never
), two
simultaneous pipelines may start. Both push pipelines and merge request pipelines can
be triggered by the same event (a push to the source branch for an open merge request).
See how to prevent duplicate pipelines
for more details.
Prevent duplicate pipelines
Jobs defined with rules
can trigger multiple pipelines with the same action. You
don't have to explicitly configure rules for each type of pipeline to trigger them
accidentally. Rules that are too broad could cause simultaneous pipelines of a different
type to run unexpectedly.
Some configurations that have the potential to cause duplicate pipelines cause a pipeline warning to be displayed. Introduced in GitLab 13.3.
For example:
job:
script: echo "This job creates double pipelines!"
rules:
- if: '$CUSTOM_VARIABLE == "false"'
when: never
- when: always
This job does not run when $CUSTOM_VARIABLE
is false, but it does run in all
other pipelines, including both push (branch) and merge request pipelines. With
this configuration, every push to an open merge request's source branch
causes duplicated pipelines.
There are multiple ways to avoid duplicate pipelines:
-
Use
workflow: rules
to specify which types of pipelines can run. To eliminate duplicate pipelines, use merge request pipelines only or push (branch) pipelines only. -
Rewrite the rules to run the job only in very specific cases, and avoid a final
when:
rule:job: script: echo "This job does NOT create double pipelines!" rules: - if: '$CUSTOM_VARIABLE == "true" && $CI_PIPELINE_SOURCE == "merge_request_event"'
You can prevent duplicate pipelines by changing the job rules to avoid either push (branch)
pipelines or merge request pipelines. However, if you use a - when: always
rule without
workflow: rules
, GitLab still displays a pipeline warning.
For example, the following does not trigger double pipelines, but is not recommended
without workflow: rules
:
job:
script: echo "This job does NOT create double pipelines!"
rules:
- if: '$CI_PIPELINE_SOURCE == "push"'
when: never
- when: always
Do not include both push and merge request pipelines in the same job:
job:
script: echo "This job creates double pipelines!"
rules:
- if: '$CI_PIPELINE_SOURCE == "push"'
- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
Also, do not mix only/except
jobs with rules
jobs in the same pipeline.
It may not cause YAML errors, but the different default behaviors of only/except
and rules
can cause issues that are difficult to troubleshoot:
job-with-no-rules:
script: echo "This job runs in branch pipelines."
job-with-rules:
script: echo "This job runs in merge request pipelines."
rules:
- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
For every change pushed to the branch, duplicate pipelines run. One
branch pipeline runs a single job (job-with-no-rules
), and one merge request pipeline
runs the other job (job-with-rules
). Jobs with no rules default
to except: merge_requests
, so job-with-no-rules
runs in all cases except merge requests.
It is not possible to define rules based on whether or not a branch has an open merge request associated with it. You can't configure a job to be included in:
- Only branch pipelines when the branch doesn't have a merge request associated with it.
- Only merge request pipelines when the branch has a merge request associated with it.
See the related issue for more details.
rules:if
rules:if
clauses determine whether or not jobs are added to a pipeline by evaluating
an if
statement. If the if
statement is true, the job is either included
or excluded from a pipeline. In plain English, if
rules can be interpreted as one of:
- "If this rule evaluates to true, add the job" (default).
- "If this rule evaluates to true, do not add the job" (by adding
when: never
).
rules:if
differs slightly from only:variables
by accepting only a single
expression string per rule, rather than an array of them. Any set of expressions to be
evaluated can be conjoined into a single expression
by using &&
or ||
, and the variable matching operators (==
, !=
, =~
and !~
).
Unlike variables in script
sections, variables in rules expressions are always formatted as $VARIABLE
.
if:
clauses are evaluated based on the values of predefined CI/CD variables
or custom CI/CD variables.
For example:
job:
script: echo "Hello, Rules!"
rules:
- if: '$CI_MERGE_REQUEST_SOURCE_BRANCH_NAME =~ /^feature/ && $CI_MERGE_REQUEST_TARGET_BRANCH_NAME == "master"'
when: always
- if: '$CI_MERGE_REQUEST_SOURCE_BRANCH_NAME =~ /^feature/'
when: manual
allow_failure: true
- if: '$CI_MERGE_REQUEST_SOURCE_BRANCH_NAME' # Checking for the presence of a variable is possible
Some details regarding the logic that determines the when
for the job:
- If none of the provided rules match, the job is set to
when: never
and is not included in the pipeline. - A rule without any conditional clause, such as a
when
orallow_failure
rule withoutif
orchanges
, always matches, and is always used if reached. - If a rule matches and has no
when
defined, the rule uses thewhen
defined for the job, which defaults toon_success
if not defined. - You can define
when
once per rule, or once at the job-level, which applies to all rules. You can't mixwhen
at the job-level withwhen
in rules.
Common if
clauses for rules
For behavior similar to the only
/except
keywords, you can
check the value of the $CI_PIPELINE_SOURCE
variable:
Value | Description |
---|---|
api |
For pipelines triggered by the pipelines API. |
chat |
For pipelines created by using a GitLab ChatOps command. |
external |
When you use CI services other than GitLab. |
external_pull_request_event |
When an external pull request on GitHub is created or updated. See Pipelines for external pull requests. |
merge_request_event |
For pipelines created when a merge request is created or updated. Required to enable merge request pipelines, merged results pipelines, and merge trains. |
parent_pipeline |
For pipelines triggered by a parent/child pipeline with rules . Use this pipeline source in the child pipeline configuration so that it can be triggered by the parent pipeline. |
pipeline |
For multi-project pipelines created by using the API with CI_JOB_TOKEN , or the trigger keyword. |
push |
For pipelines triggered by a git push event, including for branches and tags. |
schedule |
For scheduled pipelines. |
trigger |
For pipelines created by using a trigger token. |
web |
For pipelines created by using Run pipeline button in the GitLab UI, from the project's CI/CD > Pipelines section. |
webide |
For pipelines created by using the WebIDE. |
For example:
job:
script: echo "Hello, Rules!"
rules:
- if: '$CI_PIPELINE_SOURCE == "schedule"'
when: manual
allow_failure: true
- if: '$CI_PIPELINE_SOURCE == "push"'
This example runs the job as a manual job in scheduled pipelines or in push
pipelines (to branches or tags), with when: on_success
(default). It does not
add the job to any other pipeline type.
Another example:
job:
script: echo "Hello, Rules!"
rules:
- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
- if: '$CI_PIPELINE_SOURCE == "schedule"'
This example runs the job as a when: on_success
job in merge request pipelines
and scheduled pipelines. It does not run in any other pipeline type.
Other commonly used variables for if
clauses:
if: $CI_COMMIT_TAG
: If changes are pushed for a tag.if: $CI_COMMIT_BRANCH
: If changes are pushed to any branch.if: '$CI_COMMIT_BRANCH == "master"'
: If changes are pushed tomaster
.if: '$CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH'
: If changes are pushed to the default branch (usuallymaster
). Use when you want to have the same configuration in multiple projects with different default branches.if: '$CI_COMMIT_BRANCH =~ /regex-expression/'
: If the commit branch matches a regular expression.if: '$CUSTOM_VARIABLE !~ /regex-expression/'
: If the custom variableCUSTOM_VARIABLE
does not match a regular expression.if: '$CUSTOM_VARIABLE == "value1"'
: If the custom variableCUSTOM_VARIABLE
is exactlyvalue1
.
rules:changes
rules:changes
determines whether or not to add jobs to a pipeline by checking for
changes to specific files.
rules: changes
works exactly the same way as only: changes
and except: changes
,
accepting an array of paths. It's recommended to only use rules: changes
with branch
pipelines or merge request pipelines. For example, it's common to use rules: changes
with merge request pipelines:
docker build:
script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:
- if: '$CI_PIPELINE_SOURCE == "merge_request_event"'
changes:
- Dockerfile
when: manual
allow_failure: true
In this example:
- If the pipeline is a merge request pipeline, check
Dockerfile
for changes. - If
Dockerfile
has changed, add the job to the pipeline as a manual job, and the pipeline continues running even if the job is not triggered (allow_failure: true
). - If
Dockerfile
has not changed, do not add job to any pipeline (same aswhen: never
).
To use rules: changes
with branch pipelines instead of merge request pipelines,
change the if:
clause in the example above to:
rules:
- if: $CI_PIPELINE_SOURCE == "push" && $CI_COMMIT_BRANCH
To implement a rule similar to except:changes
,
use when: never
.
WARNING:
You can use rules: changes
with other pipeline types, but it is not recommended
because rules: changes
always evaluates to true when there is no Git push
event.
Tag pipelines, scheduled pipelines, and so on do not have a Git push
event
associated with them. A rules: changes
job is always added to those pipeline
if there is no if:
statement that limits the job to branch or merge request pipelines.
Variables in rules:changes
- Introduced in GitLab 13.6.
- Feature flag removed in GitLab 13.7.
CI/CD variables can be used in rules:changes
expressions to determine when
to add jobs to a pipeline:
docker build:
variables:
DOCKERFILES_DIR: 'path/to/files/'
script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:
- changes:
- $DOCKERFILES_DIR/*
You can use The $
character for both variables and paths. For example, if the
$DOCKERFILES_DIR
variable exists, its value is used. If it does not exist, the
$
is interpreted as being part of a path.
rules:exists
Introduced in GitLab 12.4.
exists
accepts an array of paths and matches if any of these paths exist
as files in the repository.
In this example, job
runs if a Dockerfile
exists anywhere in the repository:
job:
script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:
- exists:
- Dockerfile
Paths are relative to the project directory ($CI_PROJECT_DIR
) and can't directly link outside it.
You can use glob patterns to match multiple files in any directory in the repository:
job:
script: bundle exec rspec
rules:
- exists:
- spec/**.rb
Glob patterns are interpreted with Ruby File.fnmatch
with the flags File::FNM_PATHNAME | File::FNM_DOTMATCH | File::FNM_EXTGLOB
.
For performance reasons, GitLab matches a maximum of 10,000 exists
patterns. After the 10,000th check, rules with patterned globs always match.
rules:allow_failure
Introduced in GitLab 12.8.
You can use allow_failure: true
in rules:
to allow a job to fail, or a manual job to
wait for action, without stopping the pipeline itself. All jobs that use rules:
default to allow_failure: false
if allow_failure:
is not defined.
The rule-level rules:allow_failure
option overrides the job-level
allow_failure
option, and is only applied when the job is
triggered by the particular rule.
job:
script: echo "Hello, Rules!"
rules:
- if: '$CI_MERGE_REQUEST_TARGET_BRANCH_NAME == "master"'
when: manual
allow_failure: true
In this example, if the first rule matches, then the job has when: manual
and allow_failure: true
.
rules:variables
- Introduced in GitLab 13.7.
- It was deployed behind a feature flag, disabled by default.
- Became enabled by default on GitLab 13.8.
- It's enabled on GitLab.com.
- It's recommended for production use.
- For GitLab self-managed instances, GitLab administrators can opt to disable it. (FREE SELF)
WARNING: This feature might not be available to you. Check the version history note above for details.
You can use variables
in rules:
to define variables for specific conditions.
For example:
job:
variables:
DEPLOY_VARIABLE: "default-deploy"
rules:
- if: $CI_COMMIT_REF_NAME =~ /master/
variables: # Override DEPLOY_VARIABLE defined
DEPLOY_VARIABLE: "deploy-production" # at the job level.
- if: $CI_COMMIT_REF_NAME =~ /feature/
variables:
IS_A_FEATURE: "true" # Define a new variable.
script:
- echo "Run script with $DEPLOY_VARIABLE as an argument"
- echo "Run another script if $IS_A_FEATURE exists"
Enable or disable rules:variables (FREE SELF)
rules:variables is under development but ready for production use. It is deployed behind a feature flag that is enabled by default. GitLab administrators with access to the GitLab Rails console can opt to disable it.
To enable it:
Feature.enable(:ci_rules_variables)
To disable it:
Feature.disable(:ci_rules_variables)
Complex rule clauses
To conjoin if
, changes
, and exists
clauses with an AND
, use them in the
same rule.
In the following example:
- If the
Dockerfile
file or any file in/docker/scripts
has changed, and$VAR
== "string value", then the job runs manually - Otherwise, the job isn't included in the pipeline.
docker build:
script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
rules:
- if: '$VAR == "string value"'
changes: # Include the job and set to when:manual if any of the follow paths match a modified file.
- Dockerfile
- docker/scripts/*
when: manual
# - "when: never" would be redundant here. It is implied any time rules are listed.
Keywords such as branches
or refs
that are available for
only
/except
are not available in rules
. They are being individually
considered for their usage and behavior in this context. Future keyword improvements
are being discussed in our epic for improving rules
,
where anyone can add suggestions or requests.
You can use parentheses with &&
and ||
to build more complicated variable expressions.
Introduced in GitLab 13.3:
job1:
script:
- echo This rule uses parentheses.
rules:
if: ($CI_COMMIT_BRANCH == "master" || $CI_COMMIT_BRANCH == "develop") && $MY_VARIABLE
WARNING:
Before GitLab 13.3,
rules that use both ||
and &&
may evaluate with an unexpected order of operations.
only
/except
(basic)
NOTE:
only
and except
are not being actively developed. To define when
to add jobs to pipelines, use rules
.
only
and except
are two keywords that determine when to add jobs to pipelines:
only
defines the names of branches and tags the job runs for.except
defines the names of branches and tags the job does not run for.
There are a few rules that apply to the usage of job policy:
only
andexcept
are inclusive. If bothonly
andexcept
are defined in a job specification, the ref is filtered byonly
andexcept
.only
andexcept
can use regular expressions (supported regexp syntax).only
andexcept
can specify a repository path to filter jobs for forks.
In addition, only
and except
can use special keywords:
Value | Description |
---|---|
api |
For pipelines triggered by the pipelines API. |
branches |
When the Git reference for a pipeline is a branch. |
chat |
For pipelines created by using a GitLab ChatOps command. |
external |
When you use CI services other than GitLab. |
external_pull_requests |
When an external pull request on GitHub is created or updated (See Pipelines for external pull requests). |
merge_requests |
For pipelines created when a merge request is created or updated. Enables merge request pipelines, merged results pipelines, and merge trains. |
pipelines |
For multi-project pipelines created by using the API with CI_JOB_TOKEN , or the trigger keyword. |
pushes |
For pipelines triggered by a git push event, including for branches and tags. |
schedules |
For scheduled pipelines. |
tags |
When the Git reference for a pipeline is a tag. |
triggers |
For pipelines created by using a trigger token. |
web |
For pipelines created by using Run pipeline button in the GitLab UI, from the project's CI/CD > Pipelines section. |
Scheduled pipelines run on specific branches, so jobs configured with only: branches
run on scheduled pipelines too. Add except: schedules
to prevent jobs with only: branches
from running on scheduled pipelines.
In the example below, job
runs only for refs that start with issue-
,
whereas all branches are skipped:
job:
# use regexp
only:
- /^issue-.*$/
# use special keyword
except:
- branches
Pattern matching is case-sensitive by default. Use i
flag modifier, like
/pattern/i
to make a pattern case-insensitive:
job:
# use regexp
only:
- /^issue-.*$/i
# use special keyword
except:
- branches
In this example, job
runs only for refs that are tagged, or if a build is
explicitly requested by an API trigger or a Pipeline Schedule:
job:
# use special keywords
only:
- tags
- triggers
- schedules
Use the repository path to have jobs executed only for the parent repository and not forks:
job:
only:
- branches@gitlab-org/gitlab
except:
- master@gitlab-org/gitlab
- /^release/.*$/@gitlab-org/gitlab
The above example runs job
for all branches on gitlab-org/gitlab
,
except master
and those with names prefixed with release/
.
If a job does not have an only
rule, only: ['branches', 'tags']
is set by
default. If it does not have an except
rule, it's empty.
For example, job1
and job2
are essentially the same:
job1:
script: echo 'test'
job2:
script: echo 'test'
only: ['branches', 'tags']
Regular expressions
The @
symbol denotes the beginning of a ref's repository path.
To match a ref name that contains the @
character in a regular expression,
you must use the hex character code match \x40
.
Only the tag or branch name can be matched by a regular expression. The repository path, if given, is always matched literally.
To match the tag or branch name,
the entire ref name part of the pattern must be a regular expression surrounded by /
.
For example, you can't use issue-/.*/
to match all tag names or branch names
that begin with issue-
, but you can use /issue-.*/
.
Regular expression flags must be appended after the closing /
.
NOTE:
Use anchors ^
and $
to avoid the regular expression
matching only a substring of the tag name or branch name.
For example, /^issue-.*$/
is equivalent to /^issue-/
,
while just /issue/
would also match a branch called severe-issues
.
Supported only
/except
regexp syntax
In GitLab 11.9.4, GitLab began internally converting the regexp used
in only
and except
keywords to RE2.
RE2 limits the set of available features due to computational complexity, and some features, like negative lookaheads, became unavailable. Only a subset of features provided by Ruby Regexp are now supported.
From GitLab 11.9.7 to GitLab 12.0, GitLab provided a feature flag to let you use unsafe regexp syntax. After migrating to safe syntax, you should disable this feature flag again:
Feature.enable(:allow_unsafe_ruby_regexp)
only
/except
(advanced)
GitLab supports multiple strategies, and it's possible to use an array or a hash configuration scheme.
Four keys are available:
refs
variables
changes
kubernetes
If you use multiple keys under only
or except
, the keys are evaluated as a
single conjoined expression. That is:
only:
includes the job if all of the keys have at least one condition that matches.except:
excludes the job if any of the keys have at least one condition that matches.
With only
, individual keys are logically joined by an AND
. A job is added to
the pipeline if the following is true:
(any listed refs are true) AND (any listed variables are true) AND (any listed changes are true) AND (any chosen Kubernetes status matches)
In the example below, the test
job is only
created when all of the following are true:
- The pipeline is scheduled or runs for
master
. - The
variables
keyword matches. - The
kubernetes
service is active on the project.
test:
script: npm run test
only:
refs:
- master
- schedules
variables:
- $CI_COMMIT_MESSAGE =~ /run-end-to-end-tests/
kubernetes: active
With except
, individual keys are logically joined by an OR
. A job is not
added if the following is true:
(any listed refs are true) OR (any listed variables are true) OR (any listed changes are true) OR (a chosen Kubernetes status matches)
In the example below, the test
job is not created when any of the following are true:
- The pipeline runs for the
master
branch. - There are changes to the
README.md
file in the root directory of the repository.
test:
script: npm run test
except:
refs:
- master
changes:
- "README.md"
only:refs
/except:refs
refs
policy introduced in GitLab 10.0.
The refs
strategy can take the same values as the
simplified only/except configuration.
In the example below, the deploy
job is created only when the
pipeline is scheduled or runs for the master
branch:
deploy:
only:
refs:
- master
- schedules
only:kubernetes
/except:kubernetes
kubernetes
policy introduced in GitLab 10.0.
The kubernetes
strategy accepts only the active
keyword.
In the example below, the deploy
job is created only when the
Kubernetes service is active in the project:
deploy:
only:
kubernetes: active
only:variables
/except:variables
variables
policy introduced in GitLab 10.7.
The variables
keyword defines variable expressions.
These expressions determine whether or not a job should be created.
Examples of variable expressions:
deploy:
script: cap staging deploy
only:
refs:
- branches
variables:
- $RELEASE == "staging"
- $STAGING
Another use case is excluding jobs depending on a commit message:
end-to-end:
script: rake test:end-to-end
except:
variables:
- $CI_COMMIT_MESSAGE =~ /skip-end-to-end-tests/
You can use parentheses with &&
and ||
to build more complicated variable expressions.
Introduced in GitLab 13.3:
job1:
script:
- echo This rule uses parentheses.
only:
variables:
- ($CI_COMMIT_BRANCH == "master" || $CI_COMMIT_BRANCH == "develop") && $MY_VARIABLE
only:changes
/except:changes
changes
policy introduced in GitLab 11.4.
Use the changes
keyword with only
to run a job, or with except
to skip a job,
when a Git push event modifies a file.
Use only:changes
with pipelines triggered by the following refs only:
branches
external_pull_requests
merge_requests
(see additional details about usingonly:changes
with pipelines for merge requests)
WARNING:
In pipelines with sources other than the three above
changes
can't determine if a given file is new or old and always returns true
.
You can configure jobs to use only: changes
with other only: refs
keywords. However,
those jobs ignore the changes and always run.
In this example, when you push commits to an existing branch, the docker build
job
runs only if any of these files change:
- The
Dockerfile
file. - Files in the
docker/scripts/
directory. - Files and subdirectories in the
dockerfiles
directory. - Files with
rb
,py
,sh
extensions in themore_scripts
directory.
docker build:
script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
only:
refs:
- branches
changes:
- Dockerfile
- docker/scripts/*
- dockerfiles/**/*
- more_scripts/*.{rb,py,sh}
WARNING:
If you use only:changes
with only allow merge requests to be merged if the pipeline succeeds,
you should also use only:merge_requests
. Otherwise it may not work as expected.
You can also use glob patterns to match multiple files in either the root directory of the repository, or in any directory in the repository. However, they must be wrapped in double quotes or GitLab can't parse them:
test:
script: npm run test
only:
refs:
- branches
changes:
- "*.json"
- "**/*.sql"
You can skip a job if a change is detected in any file with a
.md
extension in the root directory of the repository:
build:
script: npm run build
except:
changes:
- "*.md"
If you change multiple files, but only one file ends in .md
,
the build
job is still skipped. The job does not run for any of the files.
Read more about how to use this feature with:
Use only:changes
with pipelines for merge requests
With pipelines for merge requests, it's possible to define a job to be created based on files modified in a merge request.
Use this keyword with only: [merge_requests]
so GitLab can find the correct base
SHA of the source branch. File differences are correctly calculated from any further
commits, and all changes in the merge requests are properly tested in pipelines.
For example:
docker build service one:
script: docker build -t my-service-one-image:$CI_COMMIT_REF_SLUG .
only:
refs:
- merge_requests
changes:
- Dockerfile
- service-one/**/*
In this scenario, if a merge request changes
files in the service-one
directory or the Dockerfile
, GitLab creates
the docker build service one
job.
For example:
docker build service one:
script: docker build -t my-service-one-image:$CI_COMMIT_REF_SLUG .
only:
changes:
- Dockerfile
- service-one/**/*
In the example above, the pipeline might fail because of changes to a file in service-one/**/*
.
A later commit that doesn't have changes in service-one/**/*
but does have changes to the Dockerfile
can pass. The job
only tests the changes to the Dockerfile
.
GitLab checks the most recent pipeline that passed. If the merge request is mergeable, it doesn't matter that an earlier pipeline failed because of a change that has not been corrected.
When you use this configuration, ensure that the most recent pipeline properly corrects any failures from previous pipelines.
Use only:changes
without pipelines for merge requests
Without pipelines for merge requests, pipelines
run on branches or tags that don't have an explicit association with a merge request.
In this case, a previous SHA is used to calculate the diff, which is equivalent to git diff HEAD~
.
This can result in some unexpected behavior, including:
- When pushing a new branch or a new tag to GitLab, the policy always evaluates to true.
- When pushing a new commit, the changed files are calculated by using the previous commit as the base SHA.
Use only:changes
with scheduled pipelines
only:changes
always evaluates as true in Scheduled pipelines.
All files are considered to have changed when a scheduled pipeline runs.
needs
- Introduced in GitLab 12.2.
- In GitLab 12.3, maximum number of jobs in
needs
array raised from five to 50.- Introduced in GitLab 12.8,
needs: []
lets jobs start immediately.
Use the needs:
keyword to execute jobs out-of-order. Relationships between jobs
that use needs
can be visualized as a directed acyclic graph.
You can ignore stage ordering and run some jobs without waiting for others to complete. Jobs in multiple stages can run concurrently.
Let's consider the following example:
linux:build:
stage: build
mac:build:
stage: build
lint:
stage: test
needs: []
linux:rspec:
stage: test
needs: ["linux:build"]
linux:rubocop:
stage: test
needs: ["linux:build"]
mac:rspec:
stage: test
needs: ["mac:build"]
mac:rubocop:
stage: test
needs: ["mac:build"]
production:
stage: deploy
This example creates four paths of execution:
-
Linter: the
lint
job runs immediately without waiting for thebuild
stage to complete because it has no needs (needs: []
). -
Linux path: the
linux:rspec
andlinux:rubocop
jobs runs as soon as thelinux:build
job finishes without waiting formac:build
to finish. -
macOS path: the
mac:rspec
andmac:rubocop
jobs runs as soon as themac:build
job finishes, without waiting forlinux:build
to finish. -
The
production
job runs as soon as all previous jobs finish; in this case:linux:build
,linux:rspec
,linux:rubocop
,mac:build
,mac:rspec
,mac:rubocop
.
Requirements and limitations
- If
needs:
is set to point to a job that is not instantiated because ofonly/except
rules or otherwise does not exist, the pipeline is not created and a YAML error is shown. - The maximum number of jobs that a single job can need in the
needs:
array is limited:- For GitLab.com, the limit is 50. For more information, see our infrastructure issue.
- For self-managed instances, the limit is: 50. This limit can be changed.
- If
needs:
refers to a job that uses theparallel
keyword, it depends on all jobs created in parallel, not just one job. It also downloads artifacts from all the parallel jobs by default. If the artifacts have the same name, they overwrite each other and only the last one downloaded is saved. needs:
is similar todependencies:
in that it must use jobs from prior stages, meaning it's impossible to create circular dependencies. Depending on jobs in the current stage is not possible either, but support is planned.- Related to the above, stages must be explicitly defined for all jobs
that have the keyword
needs:
or are referred to by one.
Changing the needs:
job limit (FREE SELF)
The maximum number of jobs that can be defined in needs:
defaults to 50.
A GitLab administrator with access to the GitLab Rails console can choose a custom limit. For example, to set the limit to 100:
Plan.default.actual_limits.update!(ci_needs_size_limit: 100)
To disable directed acyclic graphs (DAG), set the limit to 0
.
Artifact downloads with needs
Introduced in GitLab v12.6.
Use artifacts: true
(default) or artifacts: false
to control when artifacts are
downloaded in jobs that use needs
.
In this example, the rspec
job downloads the build_job
artifacts, but the
rubocop
job does not:
build_job:
stage: build
artifacts:
paths:
- binaries/
rspec:
stage: test
needs:
- job: build_job
artifacts: true
rubocop:
stage: test
needs:
- job: build_job
artifacts: false
In this example, the rspec
job downloads the artifacts from all three build_jobs
.
artifacts
is:
- Set to true for
build_job_1
. - Defaults to true for both
build_job_2
andbuild_job_3
.
rspec:
needs:
- job: build_job_1
artifacts: true
- job: build_job_2
- build_job_3
In GitLab 12.6 and later, you can't combine the dependencies
keyword
with needs
.
Cross project artifact downloads with needs
(PREMIUM)
Introduced in GitLab v12.7.
Use needs
to download artifacts from up to five jobs in pipelines:
- On other refs in the same project.
- In different projects, groups and namespaces.
build_job:
stage: build
script:
- ls -lhR
needs:
- project: namespace/group/project-name
job: build-1
ref: master
artifacts: true
build_job
downloads the artifacts from the latest successful build-1
job
on the master
branch in the group/project-name
project. If the project is in the
same group or namespace, you can omit them from the project:
keyword. For example,
project: group/project-name
or project: project-name
.
The user running the pipeline must have at least reporter
access to the group or project, or the group/project must have public visibility.
Artifact downloads between pipelines in the same project
Use needs
to download artifacts from different pipelines in the current project.
Set the project
keyword as the current project's name, and specify a ref.
In this example, build_job
downloads the artifacts for the latest successful
build-1
job with the other-ref
ref:
build_job:
stage: build
script:
- ls -lhR
needs:
- project: group/same-project-name
job: build-1
ref: other-ref
artifacts: true
CI/CD variable support for project:
, job:
, and ref
was introduced
in GitLab 13.3. Feature flag removed in GitLab 13.4.
For example:
build_job:
stage: build
script:
- ls -lhR
needs:
- project: $CI_PROJECT_PATH
job: $DEPENDENCY_JOB_NAME
ref: $ARTIFACTS_DOWNLOAD_REF
artifacts: true
Downloading artifacts from jobs that are run in parallel:
is not supported.
To download artifacts between parent-child pipelines use needs:pipeline
.
Downloading artifacts from the same ref as the currently running pipeline is not
recommended because artifacts could be overridden by concurrent pipelines running
on the same ref.
Artifact downloads to child pipelines
Introduced in GitLab v13.7.
A child pipeline can download artifacts from a job in its parent pipeline or another child pipeline in the same parent-child pipeline hierarchy.
For example, with the following parent pipeline that has a job that creates some artifacts:
create-artifact:
stage: build
script: echo 'sample artifact' > artifact.txt
artifacts:
paths: [artifact.txt]
child-pipeline:
stage: test
trigger:
include: child.yml
strategy: depend
variables:
PARENT_PIPELINE_ID: $CI_PIPELINE_ID
A job in the child pipeline can download artifacts from the create-artifact
job in
the parent pipeline:
use-artifact:
script: cat artifact.txt
needs:
- pipeline: $PARENT_PIPELINE_ID
job: create-artifact
The pipeline
attribute accepts a pipeline ID and it must be a pipeline present
in the same parent-child pipeline hierarchy of the given pipeline.
The pipeline
attribute does not accept the current pipeline ID ($CI_PIPELINE_ID
).
To download artifacts from a job in the current pipeline, use the basic form of needs
.
tags
Use tags
to select a specific runner from the list of all runners that are
available for the project.
When you register a runner, you can specify the runner's tags, for
example ruby
, postgres
, development
.
In this example, the job is run by a runner that
has both ruby
and postgres
tags defined.
job:
tags:
- ruby
- postgres
You can use tags to run different jobs on different platforms. For
example, if you have an OS X runner with tag osx
and a Windows runner with tag
windows
, you can run a job on each platform:
windows job:
stage:
- build
tags:
- windows
script:
- echo Hello, %USERNAME%!
osx job:
stage:
- build
tags:
- osx
script:
- echo "Hello, $USER!"
allow_failure
Use allow_failure
when you want to let a job fail without impacting the rest of the CI
suite. The default value is false
, except for manual jobs that use
the when: manual
syntax.
In jobs that use rules:
, all jobs default to allow_failure: false
,
including when: manual
jobs.
When allow_failure
is set to true
and the job fails, the job shows an orange warning in the UI.
However, the logical flow of the pipeline considers the job a
success/passed, and is not blocked.
Assuming all other jobs are successful, the job's stage and its pipeline show the same orange warning. However, the associated commit is marked as "passed", without warnings.
In the example below, job1
and job2
run in parallel, but if job1
fails, it doesn't stop the next stage from running, because it's marked with
allow_failure: true
:
job1:
stage: test
script:
- execute_script_that_will_fail
allow_failure: true
job2:
stage: test
script:
- execute_script_that_will_succeed
job3:
stage: deploy
script:
- deploy_to_staging
allow_failure:exit_codes
- Introduced in GitLab 13.8.
- Feature flag removed in GitLab 13.9.
Use allow_failure:exit_codes
to dynamically control if a job should be allowed
to fail. You can list which exit codes are not considered failures. The job fails
for any other exit code:
test_job_1:
script:
- echo "Run a script that results in exit code 1. This job fails."
- exit 1
allow_failure:
exit_codes: 137
test_job_2:
script:
- echo "Run a script that results in exit code 137. This job is allowed to fail."
- exit 137
allow_failure:
exit_codes:
- 137
- 255
when
Use when
to implement jobs that run in case of failure or despite the
failure.
The valid values of when
are:
on_success
(default) - Execute job only when all jobs in earlier stages succeed, or are considered successful because they haveallow_failure: true
.on_failure
- Execute job only when at least one job in an earlier stage fails.always
- Execute job regardless of the status of jobs in earlier stages.manual
- Execute job manually.delayed
- Delay the execution of a job for a specified duration. Added in GitLab 11.14.never
:- With
rules
, don't execute job. - With
workflow:rules
, don't run pipeline.
- With
For example:
stages:
- build
- cleanup_build
- test
- deploy
- cleanup
build_job:
stage: build
script:
- make build
cleanup_build_job:
stage: cleanup_build
script:
- cleanup build when failed
when: on_failure
test_job:
stage: test
script:
- make test
deploy_job:
stage: deploy
script:
- make deploy
when: manual
cleanup_job:
stage: cleanup
script:
- cleanup after jobs
when: always
The above script:
- Executes
cleanup_build_job
only whenbuild_job
fails. - Always executes
cleanup_job
as the last step in pipeline regardless of success or failure. - Executes
deploy_job
when you run it manually in the GitLab UI.
when:manual
A manual job is a type of job that is not executed automatically and must be explicitly started by a user. You might want to use manual jobs for things like deploying to production.
To make a job manual, add when: manual
to its configuration.
Manual jobs can be started from the pipeline, job, environment, and deployment views.
Manual jobs can be either optional or blocking:
-
Optional: Manual jobs have `allow_failure: true set by default and are considered optional. The status of an optional manual job does not contribute to the overall pipeline status. A pipeline can succeed even if all its manual jobs fail.
-
Blocking: To make a blocking manual job, add
allow_failure: false
to its configuration. Blocking manual jobs stop further execution of the pipeline at the stage where the job is defined. To let the pipeline continue running, click {play} (play) on the blocking manual job.Merge requests in projects with merge when pipeline succeeds enabled can't be merged with a blocked pipeline. Blocked pipelines show a status of blocked.
When you use rules:
, allow_failure
defaults to false
, including for manual jobs.
To trigger a manual job, a user must have permission to merge to the assigned branch. You can use protected branches to more strictly protect manual deployments from being run by unauthorized users.
In GitLab 13.5 and later, you
can use when:manual
in the same job as trigger
. In GitLab 13.4 and
earlier, using them together causes the error jobs:#{job-name} when should be on_success, on_failure or always
.
Protecting manual jobs (PREMIUM)
Use protected environments to define a list of users authorized to run a manual job. You can authorize only the users associated with a protected environment to trigger manual jobs, which can:
- More precisely limit who can deploy to an environment.
- Block a pipeline until an approved user "approves" it.
To protect a manual job:
-
Add an
environment
to the job. For example:deploy_prod: stage: deploy script: - echo "Deploy to production server" environment: name: production url: https://example.com when: manual only: - master
-
In the protected environments settings, select the environment (
production
in the example above) and add the users, roles or groups that are authorized to trigger the manual job to the Allowed to Deploy list. Only those in this list can trigger this manual job, as well as GitLab administrators who are always able to use protected environments.
You can use protected environments with blocking manual jobs to have a list of users
allowed to approve later pipeline stages. Add allow_failure: false
to the protected
manual job and the pipeline's next stages only run after the manual job is triggered
by authorized users.
when:delayed
Introduced in GitLab 11.4.
Use when: delayed
to execute scripts after a waiting period, or if you want to avoid
jobs immediately entering the pending
state.
You can set the period with start_in
keyword. The value of start_in
is an elapsed time in seconds, unless a unit is
provided. start_in
must be less than or equal to one week. Examples of valid values include:
'5'
5 seconds
30 minutes
1 day
1 week
When a stage includes a delayed job, the pipeline doesn't progress until the delayed job finishes. You can use this keyword to insert delays between different stages.
The timer of a delayed job starts immediately after the previous stage completes. Similar to other types of jobs, a delayed job's timer doesn't start unless the previous stage passes.
The following example creates a job named timed rollout 10%
that is executed 30 minutes after the previous stage completes:
timed rollout 10%:
stage: deploy
script: echo 'Rolling out 10% ...'
when: delayed
start_in: 30 minutes
To stop the active timer of a delayed job, click the {time-out} (Unschedule) button. This job can no longer be scheduled to run automatically. You can, however, execute the job manually.
To start a delayed job immediately, click the Play button. Soon GitLab Runner picks up and starts the job.
environment
Use environment
to define the environment that a job deploys to.
If environment
is specified and no environment under that name exists, a new
one is created automatically.
In its simplest form, the environment
keyword can be defined like:
deploy to production:
stage: deploy
script: git push production HEAD:master
environment: production
In the above example, the deploy to production
job is marked as doing a
deployment to the production
environment.
environment:name
The environment: name
keyword can use any of the defined CI/CD variables,
including predefined, secure, or variables defined in the .gitlab-ci.yml
file.
You can't use variables defined in a script
section.
The environment
name can contain:
- letters
- digits
- spaces
-
_
/
$
{
}
Common names are qa
, staging
, and production
, but you can use whatever
name works with your workflow.
Instead of defining the name of the environment right after the environment
keyword, it's also possible to define it as a separate value. For that, use
the name
keyword under environment
:
deploy to production:
stage: deploy
script: git push production HEAD:master
environment:
name: production
environment:url
The environment:url
keyword can use any of the defined CI/CD variables,
including predefined, secure, or variables defined in the .gitlab-ci.yml
file.
You can't use variables defined in a script
section.
This optional value exposes buttons that take you to the defined URL
In this example, if the job finishes successfully, it creates buttons
in the merge requests and in the environments/deployments pages that point
to https://prod.example.com
.
deploy to production:
stage: deploy
script: git push production HEAD:master
environment:
name: production
url: https://prod.example.com
environment:on_stop
- Introduced in GitLab 8.13.
- Starting with GitLab 8.14, when you have an environment that has a stop action defined, GitLab automatically triggers a stop action when the associated branch is deleted.
Closing (stopping) environments can be achieved with the on_stop
keyword
defined under environment
. It declares a different job that runs to close the
environment.
Read the environment:action
section for an example.
environment:action
Introduced in GitLab 8.13.
Use the action
keyword to specify jobs that prepare, start, or stop environments.
Value | Description |
---|---|
start | Default value. Indicates that job starts the environment. The deployment is created after the job starts. |
prepare | Indicates that job is only preparing the environment. Does not affect deployments. Read more about environments |
stop | Indicates that job stops deployment. See the example below. |
Take for instance:
review_app:
stage: deploy
script: make deploy-app
environment:
name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com
on_stop: stop_review_app
stop_review_app:
stage: deploy
variables:
GIT_STRATEGY: none
script: make delete-app
when: manual
environment:
name: review/$CI_COMMIT_REF_NAME
action: stop
In the above example, the review_app
job deploys to the review
environment. A new stop_review_app
job is listed under on_stop
.
After the review_app
job is finished, it triggers the
stop_review_app
job based on what is defined under when
. In this case,
it is set to manual
, so it needs a manual action from
the GitLab UI to run.
Also in the example, GIT_STRATEGY
is set to none
. If the
stop_review_app
job is automatically triggered,
the runner won’t try to check out the code after the branch is deleted.
The example also overwrites global variables. If your stop
environment
job depends
on global variables, use anchor variables when you set the GIT_STRATEGY
to change the job without overriding the global variables.
The stop_review_app
job is required to have the following keywords defined:
when
- referenceenvironment:name
environment:action
Additionally, both jobs should have matching rules
or only/except
configuration.
In the example above, if the configuration is not identical:
- The
stop_review_app
job might not be included in all pipelines that include thereview_app
job. - It is not possible to trigger the
action: stop
to stop the environment automatically.
environment:auto_stop_in
Introduced in GitLab 12.8.
The auto_stop_in
keyword is for specifying the lifetime of the environment,
that when expired, GitLab automatically stops them.
For example,
review_app:
script: deploy-review-app
environment:
name: review/$CI_COMMIT_REF_NAME
auto_stop_in: 1 day
When the environment for review_app
is created, the environment's lifetime is set to 1 day
.
Every time the review app is deployed, that lifetime is also reset to 1 day
.
For more information, see the environments auto-stop documentation
environment:kubernetes
Introduced in GitLab 12.6.
Use the kubernetes
keyword to configure deployments to a
Kubernetes cluster that is associated with your project.
For example:
deploy:
stage: deploy
script: make deploy-app
environment:
name: production
kubernetes:
namespace: production
This configuration sets up the deploy
job to deploy to the production
environment, using the production
Kubernetes namespace.
For more information, see
Available settings for kubernetes
.
NOTE: Kubernetes configuration is not supported for Kubernetes clusters that are managed by GitLab. To follow progress on support for GitLab-managed clusters, see the relevant issue.
Dynamic environments
Use CI/CD variables to dynamically name environments.
For example:
deploy as review app:
stage: deploy
script: make deploy
environment:
name: review/$CI_COMMIT_REF_NAME
url: https://$CI_ENVIRONMENT_SLUG.example.com/
The deploy as review app
job is marked as a deployment to dynamically
create the review/$CI_COMMIT_REF_NAME
environment. $CI_COMMIT_REF_NAME
is a CI/CD variable set by the runner. The
$CI_ENVIRONMENT_SLUG
variable is based on the environment name, but suitable
for inclusion in URLs. If the deploy as review app
job runs in a branch named
pow
, this environment would be accessible with a URL like https://review-pow.example.com/
.
The common use case is to create dynamic environments for branches and use them as Review Apps. You can see an example that uses Review Apps at https://gitlab.com/gitlab-examples/review-apps-nginx/.
cache
Use the cache
keyword to specify a list of files and directories to
cache between jobs. You can only use paths that are in the local working copy.
If cache
is defined outside the scope of jobs, it's set
globally and all jobs use that configuration.
Caching is shared between pipelines and jobs. Caches are restored before artifacts.
Read how caching works and find out some good practices in the caching dependencies documentation.
cache:paths
Use the paths
directive to choose which files or directories to cache. Paths
are relative to the project directory ($CI_PROJECT_DIR
) and can't directly link outside it.
You can use Wildcards that use glob
patterns and:
- In GitLab Runner 13.0 and later,
doublestar.Glob
. - In GitLab Runner 12.10 and earlier,
filepath.Match
.
Cache all files in binaries
that end in .apk
and the .config
file:
rspec:
script: test
cache:
paths:
- binaries/*.apk
- .config
Locally defined cache overrides globally defined options. The following rspec
job caches only binaries/
:
cache:
paths:
- my/files
rspec:
script: test
cache:
key: rspec
paths:
- binaries/
The cache is shared between jobs, so if you're using different
paths for different jobs, you should also set a different cache:key
.
Otherwise cache content can be overwritten.
cache:key
The key
keyword defines the affinity of caching between jobs.
You can have a single cache for all jobs, cache per-job, cache per-branch,
or any other way that fits your workflow. You can fine tune caching,
including caching data between different jobs or even different branches.
The cache:key
variable can use any of the
predefined variables. The default key, if not
set, is just literal default
, which means everything is shared between
pipelines and jobs by default.
For example, to enable per-branch caching:
cache:
key: "$CI_COMMIT_REF_SLUG"
paths:
- binaries/
If you use Windows Batch to run your shell scripts you need to replace
$
with %
:
cache:
key: "%CI_COMMIT_REF_SLUG%"
paths:
- binaries/
The cache:key
variable can't contain the /
character, or the equivalent
URI-encoded %2F
. A value made only of dots (.
, %2E
) is also forbidden.
You can specify a fallback cache key to use if the specified cache:key
is not found.
Fallback cache key
Introduced in GitLab Runner 13.4.
You can use the $CI_COMMIT_REF_SLUG
variable to specify your cache:key
.
For example, if your $CI_COMMIT_REF_SLUG
is test
you can set a job
to download cache that's tagged with test
.
If a cache with this tag is not found, you can use CACHE_FALLBACK_KEY
to
specify a cache to use when none exists.
In this example, if the $CI_COMMIT_REF_SLUG
is not found, the job uses the key defined
by the CACHE_FALLBACK_KEY
variable:
variables:
CACHE_FALLBACK_KEY: fallback-key
cache:
key: "$CI_COMMIT_REF_SLUG"
paths:
- binaries/
cache:key:files
Introduced in GitLab v12.5.
The cache:key:files
keyword extends the cache:key
functionality by making it easier
to reuse some caches, and rebuild them less often, which speeds up subsequent pipeline
runs.
When you include cache:key:files
, you must also list the project files that are used to generate the key, up to a maximum of two files.
The cache key
is a SHA checksum computed from the most recent commits (up to two, if two files are listed)
that changed the given files. If neither file is changed in any commits,
the fallback key is default
.
cache:
key:
files:
- Gemfile.lock
- package.json
paths:
- vendor/ruby
- node_modules
In this example we're creating a cache for Ruby and Node.js dependencies that
is tied to current versions of the Gemfile.lock
and package.json
files. Whenever one of
these files changes, a new cache key is computed and a new cache is created. Any future
job runs that use the same Gemfile.lock
and package.json
with cache:key:files
use the new cache, instead of rebuilding the dependencies.
cache:key:prefix
Introduced in GitLab v12.5.
When you want to combine a prefix with the SHA computed for cache:key:files
,
use the prefix
keyword with key:files
.
For example, if you add a prefix
of test
, the resulting key is: test-feef9576d21ee9b6a32e30c5c79d0a0ceb68d1e5
.
If neither file is changed in any commits, the prefix is added to default
, so the
key in the example would be test-default
.
Like cache:key
, prefix
can use any of the predefined variables,
but cannot include:
- the
/
character (or the equivalent URI-encoded%2F
) - a value made only of
.
(or the equivalent URI-encoded%2E
)
cache:
key:
files:
- Gemfile.lock
prefix: ${CI_JOB_NAME}
paths:
- vendor/ruby
rspec:
script:
- bundle exec rspec
For example, adding a prefix
of $CI_JOB_NAME
causes the key to look like: rspec-feef9576d21ee9b6a32e30c5c79d0a0ceb68d1e5
and
the job cache is shared across different branches. If a branch changes
Gemfile.lock
, that branch has a new SHA checksum for cache:key:files
. A new cache key
is generated, and a new cache is created for that key.
If Gemfile.lock
is not found, the prefix is added to
default
, so the key in the example would be rspec-default
.
cache:untracked
Set untracked: true
to cache all files that are untracked in your Git
repository:
rspec:
script: test
cache:
untracked: true
Cache all Git untracked files and files in binaries
:
rspec:
script: test
cache:
untracked: true
paths:
- binaries/
cache:when
Introduced in GitLab 13.5 and GitLab Runner v13.5.0.
cache:when
defines when to save the cache, based on the status of the job. You can
set cache:when
to:
on_success
(default): Save the cache only when the job succeeds.on_failure
: Save the cache only when the job fails.always
: Always save the cache.
For example, to store a cache whether or not the job fails or succeeds:
rspec:
script: rspec
cache:
paths:
- rspec/
when: 'always'
cache:policy
The default behavior of a caching job is to download the files at the start of
execution, and to re-upload them at the end. Any changes made by the
job are persisted for future runs. This behavior is known as the pull-push
cache
policy.
If you know the job does not alter the cached files, you can skip the upload step
by setting policy: pull
in the job specification. You can add an ordinary cache
job at an earlier stage to ensure the cache is updated from time to time:
stages:
- setup
- test
prepare:
stage: setup
cache:
key: gems
paths:
- vendor/bundle
script:
- bundle install --deployment
rspec:
stage: test
cache:
key: gems
paths:
- vendor/bundle
policy: pull
script:
- bundle exec rspec ...
Use the pull
policy when you have many jobs executing in parallel that use caches. This
policy speeds up job execution and reduces load on the cache server.
If you have a job that unconditionally recreates the cache without
referring to its previous contents, you can skip the download step.
To do so, add policy: push
to the job.
artifacts
Use the artifacts
keyword to specify a list of files and directories that are
attached to the job when it succeeds, fails, or always.
The artifacts are sent to GitLab after the job finishes. They are available for download in the GitLab UI if the size is not larger than the maximum artifact size.
Job artifacts are only collected for successful jobs by default, and artifacts are restored after caches.
artifacts:paths
Paths are relative to the project directory ($CI_PROJECT_DIR
) and can't directly
link outside it. You can use Wildcards that use glob
patterns and:
- In GitLab Runner 13.0 and later,
doublestar.Glob
. - In GitLab Runner 12.10 and earlier,
filepath.Match
.
To restrict which jobs a specific job fetches artifacts from, see dependencies.
Send all files in binaries
and .config
:
artifacts:
paths:
- binaries/
- .config
To disable artifact passing, define the job with empty dependencies:
job:
stage: build
script: make build
dependencies: []
You may want to create artifacts only for tagged releases to avoid filling the build server storage with temporary build artifacts.
Create artifacts only for tags (default-job
doesn't create artifacts):
default-job:
script:
- mvn test -U
except:
- tags
release-job:
script:
- mvn package -U
artifacts:
paths:
- target/*.war
only:
- tags
You can use wildcards for directories too. For example, if you want to get all the files inside the directories that end with xyz
:
job:
artifacts:
paths:
- path/*xyz/*
artifacts:public
- Introduced in GitLab 13.8
- It's deployed behind a feature flag, disabled by default.
- It's enabled on GitLab.com.
- It's recommended for production use.
Use artifacts:public
to determine whether the job artifacts should be
publicly available.
The default for artifacts:public
is true
which means that the artifacts in
public pipelines are available for download by anonymous and guest users:
artifacts:
public: true
To deny read access for anonymous and guest users to artifacts in public
pipelines, set artifacts:public
to false
:
artifacts:
public: false
artifacts:exclude
- Introduced in GitLab 13.1
- Requires GitLab Runner 13.1
exclude
makes it possible to prevent files from being added to an artifacts
archive.
Similar to artifacts:paths
, exclude
paths are relative
to the project directory. You can use Wildcards that use
glob or
filepath.Match
patterns.
For example, to store all files in binaries/
, but not *.o
files located in
subdirectories of binaries/
:
artifacts:
paths:
- binaries/
exclude:
- binaries/**/*.o
Files matched by artifacts:untracked
can be excluded using
artifacts:exclude
too.
artifacts:expose_as
Introduced in GitLab 12.5.
Use the expose_as
keyword to expose job artifacts
in the merge request UI.
For example, to match a single file:
test:
script: ["echo 'test' > file.txt"]
artifacts:
expose_as: 'artifact 1'
paths: ['file.txt']
With this configuration, GitLab adds a link artifact 1 to the relevant merge request
that points to file1.txt
.
An example that matches an entire directory:
test:
script: ["mkdir test && echo 'test' > test/file.txt"]
artifacts:
expose_as: 'artifact 1'
paths: ['test/']
Note the following:
- Artifacts do not display in the merge request UI when using variables to define the
artifacts:paths
. - A maximum of 10 job artifacts per merge request can be exposed.
- Glob patterns are unsupported.
- If a directory is specified, the link is to the job artifacts browser if there is more than one file in the directory.
- For exposed single file artifacts with
.html
,.htm
,.txt
,.json
,.xml
, and.log
extensions, if GitLab Pages is:- Enabled, GitLab automatically renders the artifact.
- Not enabled, the file is displayed in the artifacts browser.
artifacts:name
Use the name
directive to define the name of the created artifacts
archive. You can specify a unique name for every archive. The artifacts:name
variable can make use of any of the predefined variables.
The default name is artifacts
, which becomes artifacts.zip
when you download it.
To create an archive with a name of the current job:
job:
artifacts:
name: "$CI_JOB_NAME"
paths:
- binaries/
To create an archive with a name of the current branch or tag including only the binaries directory:
job:
artifacts:
name: "$CI_COMMIT_REF_NAME"
paths:
- binaries/
If your branch-name contains forward slashes
(for example feature/my-feature
) it's advised to use $CI_COMMIT_REF_SLUG
instead of $CI_COMMIT_REF_NAME
for proper naming of the artifact.
To create an archive with a name of the current job and the current branch or tag including only the binaries directory:
job:
artifacts:
name: "$CI_JOB_NAME-$CI_COMMIT_REF_NAME"
paths:
- binaries/
To create an archive with a name of the current stage and branch name:
job:
artifacts:
name: "$CI_JOB_STAGE-$CI_COMMIT_REF_NAME"
paths:
- binaries/
If you use Windows Batch to run your shell scripts you need to replace
$
with %
:
job:
artifacts:
name: "%CI_JOB_STAGE%-%CI_COMMIT_REF_NAME%"
paths:
- binaries/
If you use Windows PowerShell to run your shell scripts you need to replace
$
with $env:
:
job:
artifacts:
name: "$env:CI_JOB_STAGE-$env:CI_COMMIT_REF_NAME"
paths:
- binaries/
artifacts:untracked
Use artifacts:untracked
to add all Git untracked files as artifacts (along
with the paths defined in artifacts:paths
). artifacts:untracked
ignores configuration
in the repository's .gitignore
file.
Send all Git untracked files:
artifacts:
untracked: true
Send all Git untracked files and files in binaries
:
artifacts:
untracked: true
paths:
- binaries/
Send all untracked files but exclude *.txt
:
artifacts:
untracked: true
exclude:
- "*.txt"
artifacts:when
Use artifacts:when
to upload artifacts on job failure or despite the
failure.
artifacts:when
can be set to one of the following values:
on_success
(default): Upload artifacts only when the job succeeds.on_failure
: Upload artifacts only when the job fails.always
: Always upload artifacts.
For example, to upload artifacts only when a job fails:
job:
artifacts:
when: on_failure
artifacts:expire_in
Use expire_in
to specify how long artifacts are active before they
expire and are deleted.
The expiration time period begins when the artifact is uploaded and stored on GitLab. If the expiry time is not defined, it defaults to the instance wide setting (30 days by default).
To override the expiration date and protect artifacts from being automatically deleted:
- Use the Keep button on the job page.
- Set the value of
expire_in
tonever
. Available in GitLab 13.3 and later.
After their expiry, artifacts are deleted hourly by default (via a cron job), and are not accessible anymore.
The value of expire_in
is an elapsed time in seconds, unless a unit is
provided. Examples of valid values:
'42'
42 seconds
3 mins 4 sec
2 hrs 20 min
2h20min
6 mos 1 day
47 yrs 6 mos and 4d
3 weeks and 2 days
never
To expire artifacts 1 week after being uploaded:
job:
artifacts:
expire_in: 1 week
The latest artifacts for refs are locked against deletion, and kept regardless of the expiry time. Introduced in GitLab 13.0 behind a disabled feature flag, and made the default behavior in GitLab 13.4.
In GitLab 13.8 and later, you can disable this behavior at the project level in the CI/CD settings. In GitLab 13.9 and later, you can disable this behavior instance-wide.
artifacts:reports
Use artifacts:reports
to collect test reports, code quality reports, and security reports from jobs.
It also exposes these reports in the GitLab UI (merge requests, pipeline views, and security dashboards).
These are the available report types:
Keyword | Description |
---|---|
artifacts:reports:cobertura |
The cobertura report collects Cobertura coverage XML files. |
artifacts:reports:codequality |
The codequality report collects Code Quality issues. |
artifacts:reports:container_scanning (ULTIMATE) |
The container_scanning report collects Container Scanning vulnerabilities. |
artifacts:reports:dast (ULTIMATE) |
The dast report collects Dynamic Application Security Testing vulnerabilities. |
artifacts:reports:dependency_scanning (ULTIMATE) |
The dependency_scanning report collects Dependency Scanning vulnerabilities. |
artifacts:reports:dotenv |
The dotenv report collects a set of environment variables. |
artifacts:reports:junit |
The junit report collects JUnit XML files. |
artifacts:reports:license_management (ULTIMATE) |
The license_management report collects Licenses (removed from GitLab 13.0). |
artifacts:reports:license_scanning (ULTIMATE) |
The license_scanning report collects Licenses. |
artifacts:reports:load_performance (PREMIUM) |
The load_performance report collects load performance metrics. |
artifacts:reports:metrics (PREMIUM) |
The metrics report collects Metrics. |
artifacts:reports:performance (PREMIUM) |
The performance report collects Browser Performance metrics. |
artifacts:reports:sast |
The sast report collects Static Application Security Testing vulnerabilities. |
artifacts:reports:terraform |
The terraform report collects Terraform tfplan.json files. |
dependencies
By default, all artifacts
from previous stages
are passed to each job. However, you can use the dependencies
keyword to
define a limited list of jobs to fetch artifacts from. You can also set a job to download no artifacts at all.
To use this feature, define dependencies
in context of the job and pass
a list of all previous jobs the artifacts should be downloaded from.
You can define jobs from stages that were executed before the current one. An error occurs if you define jobs from the current or an upcoming stage.
To prevent a job from downloading artifacts, define an empty array.
When you use dependencies
, the status of the previous job is not considered.
If a job fails or it's a manual job that isn't triggered, no error occurs.
The following example defines two jobs with artifacts: build:osx
and
build:linux
. When the test:osx
is executed, the artifacts from build:osx
are downloaded and extracted in the context of the build. The same happens
for test:linux
and artifacts from build:linux
.
The job deploy
downloads artifacts from all previous jobs because of
the stage precedence:
build:osx:
stage: build
script: make build:osx
artifacts:
paths:
- binaries/
build:linux:
stage: build
script: make build:linux
artifacts:
paths:
- binaries/
test:osx:
stage: test
script: make test:osx
dependencies:
- build:osx
test:linux:
stage: test
script: make test:linux
dependencies:
- build:linux
deploy:
stage: deploy
script: make deploy
When a dependent job fails
Introduced in GitLab 10.3.
If the artifacts of the job that is set as a dependency are expired or erased, then the dependent job fails.
You can ask your administrator to flip this switch and bring back the old behavior.
coverage
Use coverage
to configure how code coverage is extracted from the
job output.
Regular expressions are the only valid kind of value expected here. So, using
surrounding /
is mandatory to consistently and explicitly represent
a regular expression string. You must escape special characters if you want to
match them literally.
For example:
job1:
script: rspec
coverage: '/Code coverage: \d+\.\d+/'
The coverage is shown in the UI if at least one line in the job output matches the regular expression.
If there is more than one matched line in the job output, the last line is used.
For the matched line, the first occurrence of \d+(\.\d+)?
is the code coverage.
Leading zeros are removed.
Coverage output from child pipelines is not recorded or displayed. Check the related issue for more details.
retry
- Introduced in GitLab 9.5.
- Behavior expanded in GitLab 11.5 to control which failures to retry on.
Use retry
to configure how many times a job is retried in
case of a failure.
When a job fails, the job is processed again,
until the limit specified by the retry
keyword is reached.
If retry
is set to 2
, and a job succeeds in a second run (first retry), it is not retried.
The retry
value must be a positive integer, from 0
to 2
(two retries maximum, three runs in total).
This example retries all failure cases:
test:
script: rspec
retry: 2
By default, a job is retried on all failure cases. To have better control
over which failures to retry, retry
can be a hash with the following keys:
max
: The maximum number of retries.when
: The failure cases to retry.
To retry only runner system failures at maximum two times:
test:
script: rspec
retry:
max: 2
when: runner_system_failure
If there is another failure, other than a runner system failure, the job is not retried.
To retry on multiple failure cases, when
can also be an array of failures:
test:
script: rspec
retry:
max: 2
when:
- runner_system_failure
- stuck_or_timeout_failure
Possible values for when
are:
always
: Retry on any failure (default).unknown_failure
: Retry when the failure reason is unknown.script_failure
: Retry when the script failed.api_failure
: Retry on API failure.stuck_or_timeout_failure
: Retry when the job got stuck or timed out.runner_system_failure
: Retry if there is a runner system failure (for example, job setup failed).missing_dependency_failure
: Retry if a dependency is missing.runner_unsupported
: Retry if the runner is unsupported.stale_schedule
: Retry if a delayed job could not be executed.job_execution_timeout
: Retry if the script exceeded the maximum execution time set for the job.archived_failure
: Retry if the job is archived and can't be run.unmet_prerequisites
: Retry if the job failed to complete prerequisite tasks.scheduler_failure
: Retry if the scheduler failed to assign the job to a runner.data_integrity_failure
: Retry if there is a structural integrity problem detected.
You can specify the number of retry attempts for certain stages of job execution using variables.
timeout
Introduced in GitLab 12.3.
Use timeout
to configure a timeout for a specific job. For example:
build:
script: build.sh
timeout: 3 hours 30 minutes
test:
script: rspec
timeout: 3h 30m
The job-level timeout can exceed the project-level timeout but can't exceed the runner-specific timeout.
parallel
Introduced in GitLab 11.5.
Use parallel
to configure how many instances of a job to run in parallel.
The value can be from 2 to 50.
The parallel
keyword creates N instances of the same job that run in parallel.
They are named sequentially from job_name 1/N
to job_name N/N
:
test:
script: rspec
parallel: 5
Every parallel job has a CI_NODE_INDEX
and CI_NODE_TOTAL
predefined CI/CD variable set.
Different languages and test suites have different methods to enable parallelization. For example, use Semaphore Test Boosters and RSpec to run Ruby tests in parallel:
# Gemfile
source 'https://rubygems.org'
gem 'rspec'
gem 'semaphore_test_boosters'
test:
parallel: 3
script:
- bundle
- bundle exec rspec_booster --job $CI_NODE_INDEX/$CI_NODE_TOTAL
WARNING: Test Boosters reports usage statistics to the author.
You can then navigate to the Jobs tab of a new pipeline build and see your RSpec job split into three separate jobs.
Parallel matrix
jobs
- Introduced in GitLab 13.3.
Use matrix:
to run a job multiple times in parallel in a single pipeline,
but with different variable values for each instance of the job.
There can be from 2 to 50 jobs.
Jobs can only run in parallel if there are multiple runners, or a single runner is configured to run multiple jobs concurrently.
Every job gets the same CI_NODE_TOTAL
CI/CD variable value, and a unique CI_NODE_INDEX
value.
deploystacks:
stage: deploy
script:
- bin/deploy
parallel:
matrix:
- PROVIDER: aws
STACK:
- monitoring
- app1
- app2
- PROVIDER: ovh
STACK: [monitoring, backup, app]
- PROVIDER: [gcp, vultr]
STACK: [data, processing]
This example generates 10 parallel deploystacks
jobs, each with different values
for PROVIDER
and STACK
:
deploystacks: [aws, monitoring]
deploystacks: [aws, app1]
deploystacks: [aws, app2]
deploystacks: [ovh, monitoring]
deploystacks: [ovh, backup]
deploystacks: [ovh, app]
deploystacks: [gcp, data]
deploystacks: [gcp, processing]
deploystacks: [vultr, data]
deploystacks: [vultr, processing]
The job naming style was improved in GitLab 13.4.
One-dimensional matrix
jobs
Introduced in GitLab 13.5.
You can also have one-dimensional matrices with a single job:
deploystacks:
stage: deploy
script:
- bin/deploy
parallel:
matrix:
- PROVIDER: [aws, ovh, gcp, vultr]
trigger
- Introduced in GitLab Premium 11.8.
- Moved to GitLab Free in 12.8.
Use trigger
to define a downstream pipeline trigger. When GitLab starts a trigger
job,
a downstream pipeline is created.
Jobs with trigger
can only use a limited set of keywords.
For example, you can't run commands with script
, before_script
,
or after_script
.
You can use this keyword to create two different types of downstream pipelines:
In GitLab 13.2 and later, you can view which job triggered a downstream pipeline. In the pipeline graph, hover over the downstream pipeline job.
In GitLab 13.5 and later, you
can use when:manual
in the same job as trigger
. In GitLab 13.4 and
earlier, using them together causes the error jobs:#{job-name} when should be on_success, on_failure or always
.
You cannot start manual
trigger jobs with the API.
Basic trigger
syntax for multi-project pipelines
You can configure a downstream trigger by using the trigger
keyword
with a full path to a downstream project:
rspec:
stage: test
script: bundle exec rspec
staging:
stage: deploy
trigger: my/deployment
Complex trigger
syntax for multi-project pipelines
You can configure a branch name that GitLab uses to create a downstream pipeline with:
rspec:
stage: test
script: bundle exec rspec
staging:
stage: deploy
trigger:
project: my/deployment
branch: stable
To mirror the status from a triggered pipeline:
trigger_job:
trigger:
project: my/project
strategy: depend
To mirror the status from an upstream pipeline:
upstream_bridge:
stage: test
needs:
pipeline: other/project
trigger
syntax for child pipeline
Introduced in GitLab 12.7.
To create a child pipeline, specify the path to the YAML file that contains the configuration of the child pipeline:
trigger_job:
trigger:
include: path/to/child-pipeline.yml
Similar to multi-project pipelines, it's possible to mirror the status from a triggered pipeline:
trigger_job:
trigger:
include:
- local: path/to/child-pipeline.yml
strategy: depend
Trigger child pipeline with generated configuration file
Introduced in GitLab 12.9.
You can also trigger a child pipeline from a dynamically generated configuration file:
generate-config:
stage: build
script: generate-ci-config > generated-config.yml
artifacts:
paths:
- generated-config.yml
child-pipeline:
stage: test
trigger:
include:
- artifact: generated-config.yml
job: generate-config
The generated-config.yml
is extracted from the artifacts and used as the configuration
for triggering the child pipeline.
Trigger child pipeline with files from another project
Introduced in GitLab 13.5.
To trigger child pipelines with files from another private project under the same
GitLab instance, use include:file
:
child-pipeline:
trigger:
include:
- project: 'my-group/my-pipeline-library'
ref: 'master'
file: '/path/to/child-pipeline.yml'
Linking pipelines with trigger:strategy
By default, the trigger
job completes with the success
status
as soon as the downstream pipeline is created.
To force the trigger
job to wait for the downstream (multi-project or child) pipeline to complete, use
strategy: depend
. This setting makes the trigger job wait with a "running" status until the triggered
pipeline completes. At that point, the trigger
job completes and displays the same status as
the downstream job.
trigger_job:
trigger:
include: path/to/child-pipeline.yml
strategy: depend
This setting can help keep your pipeline execution linear. In the example above, jobs from subsequent stages wait for the triggered pipeline to successfully complete before starting, which reduces parallelization.
Trigger a pipeline by API call
To force a rebuild of a specific branch, tag, or commit, you can use an API call with a trigger token.
The trigger token is different than the trigger
keyword.
Read more in the triggers documentation.
interruptible
Introduced in GitLab 12.3.
Use interruptible
to indicate that a running job should be canceled if made redundant by a newer pipeline run.
Defaults to false
(uninterruptible). Jobs that have not started yet (pending) are considered interruptible
and safe to be cancelled.
This value is used only if the automatic cancellation of redundant pipelines feature
is enabled.
When enabled, a pipeline is immediately canceled when a new pipeline starts on the same branch if either of the following is true:
- All jobs in the pipeline are set as interruptible.
- Any uninterruptible jobs have not started yet.
Set jobs as interruptible that can be safely canceled once started (for instance, a build job).
For example:
stages:
- stage1
- stage2
- stage3
step-1:
stage: stage1
script:
- echo "Can be canceled."
interruptible: true
step-2:
stage: stage2
script:
- echo "Can not be canceled."
step-3:
stage: stage3
script:
- echo "Because step-2 can not be canceled, this step can never be canceled, even though it's set as interruptible."
interruptible: true
In the example above, a new pipeline run causes an existing running pipeline to be:
- Canceled, if only
step-1
is running or pending. - Not canceled, once
step-2
starts running.
When an uninterruptible job is running, the pipeline cannot be canceled, regardless of the final job's state.
resource_group
Introduced in GitLab 12.7.
Sometimes running multiple jobs or pipelines at the same time in an environment can lead to errors during the deployment.
To avoid these errors, use the resource_group
attribute to make sure that
the runner doesn't run certain jobs simultaneously. Resource groups behave similar
to semaphores in other programming languages.
When the resource_group
keyword is defined for a job in the .gitlab-ci.yml
file,
job executions are mutually exclusive across different pipelines for the same project.
If multiple jobs belonging to the same resource group are enqueued simultaneously,
only one of the jobs is picked by the runner. The other jobs wait until the
resource_group
is free.
For example:
deploy-to-production:
script: deploy
resource_group: production
In this case, two deploy-to-production
jobs in two separate pipelines can never run at the same time. As a result,
you can ensure that concurrent deployments never happen to the production environment.
You can define multiple resource groups per environment. For example, when deploying to physical devices, you may have multiple physical devices. Each device can be deployed to, but there can be only one deployment per device at any given time.
The resource_group
value can only contain letters, digits, -
, _
, /
, $
, {
, }
, .
, and spaces.
It can't start or end with /
.
For more information, see Deployments Safety.
Pipeline-level concurrency control with Cross-Project/Parent-Child pipelines
Introduced in GitLab 13.9.
You can define resource_group
for downstream pipelines that are sensitive to concurrent
executions. The trigger
keyword can trigger downstream pipelines. The
resource_group
keyword can co-exist with it. This is useful to control the
concurrency for deployment pipelines, while running non-sensitive jobs concurrently.
This example has two pipeline configurations in a project. When a pipeline starts running, non-sensitive jobs are executed first and aren't affected by concurrent executions in other pipelines. However, GitLab ensures that there are no other deployment pipelines running before triggering a deployment (child) pipeline. If other deployment pipelines are running, GitLab waits until those pipelines finish before running another one.
# .gitlab-ci.yml (parent pipeline)
build:
stage: build
script: echo "Building..."
test:
stage: test
script: echo "Testing..."
deploy:
stage: deploy
trigger:
include: deploy.gitlab-ci.yml
strategy: depend
resource_group: AWS-production
# deploy.gitlab-ci.yml (child pipeline)
stages:
- provision
- deploy
provision:
stage: provision
script: echo "Provisioning..."
deployment:
stage: deploy
script: echo "Deploying..."
Note that you must define strategy: depend
with the trigger
keyword. This ensures that the lock isn't released until the downstream pipeline
finishes.
release
Introduced in GitLab 13.2.
release
indicates that the job creates a Release.
These keywords are supported:
tag_name
description
name
(optional)ref
(optional)milestones
(optional)released_at
(optional)
The Release is created only if the job processes without error. If the Rails API
returns an error during Release creation, the release
job fails.
release-cli
Docker image
The Docker image to use for the release-cli
must be specified, using the following directive:
image: registry.gitlab.com/gitlab-org/release-cli:latest
Script
All jobs except trigger jobs must have the script
keyword. A release
job can use the output from script commands, but you can use a placeholder script if
the script is not needed:
script:
- echo 'release job'
An issue exists to remove this requirement in an upcoming version of GitLab.
A pipeline can have multiple release
jobs, for example:
ios-release:
script:
- echo 'iOS release job'
release:
tag_name: v1.0.0-ios
description: 'iOS release v1.0.0'
android-release:
script:
- echo 'Android release job'
release:
tag_name: v1.0.0-android
description: 'Android release v1.0.0'
release:tag_name
The tag_name
must be specified. It can refer to an existing Git tag or can be specified by the user.
When the specified tag doesn't exist in the repository, a new tag is created from the associated SHA of the pipeline.
For example, when creating a Release from a Git tag:
job:
release:
tag_name: $CI_COMMIT_TAG
description: 'Release description'
It is also possible to create any unique tag, in which case only: tags
is not mandatory.
A semantic versioning example:
job:
release:
tag_name: ${MAJOR}_${MINOR}_${REVISION}
description: 'Release description'
- The Release is created only if the job's main script succeeds.
- If the Release already exists, it is not updated and the job with the
release
keyword fails. - The
release
section executes after thescript
tag and before theafter_script
.
release:name
The Release name. If omitted, it is populated with the value of release: tag_name
.
release:description
Specifies the long description of the Release. You can also specify a file that contains the description.
Read description from a file
Introduced in GitLab 13.7.
You can specify a file in $CI_PROJECT_DIR
that contains the description. The file must be relative
to the project directory ($CI_PROJECT_DIR
), and if the file is a symbolic link it can't reside
outside of $CI_PROJECT_DIR
. The ./path/to/file
and filename can't contain spaces.
job:
release:
tag_name: ${MAJOR}_${MINOR}_${REVISION}
description: './path/to/CHANGELOG.md'
release:ref
If the release: tag_name
doesn’t exist yet, the release is created from ref
.
ref
can be a commit SHA, another tag name, or a branch name.
release:milestones
The title of each milestone the release is associated with.
release:released_at
The date and time when the release is ready. Defaults to the current date and time if not defined. Should be enclosed in quotes and expressed in ISO 8601 format.
released_at: '2021-03-15T08:00:00Z'
Complete example for release
Combining the individual examples given above for release
results in the following
code snippets. There are two options, depending on how you generate the
tags. You can't use these options together, so choose one:
-
To create a release when you push a Git tag, or when you add a Git tag in the UI by going to Repository > Tags:
release_job: stage: release image: registry.gitlab.com/gitlab-org/release-cli:latest rules: - if: $CI_COMMIT_TAG # Run this job when a tag is created manually script: - echo 'running release_job' release: name: 'Release $CI_COMMIT_TAG' description: 'Created using the release-cli $EXTRA_DESCRIPTION' # $EXTRA_DESCRIPTION must be defined tag_name: '$CI_COMMIT_TAG' # elsewhere in the pipeline. ref: '$CI_COMMIT_TAG' milestones: - 'm1' - 'm2' - 'm3' released_at: '2020-07-15T08:00:00Z' # Optional, is auto generated if not defined, or can use a variable.
-
To create a release automatically when commits are pushed or merged to the default branch, using a new Git tag that is defined with variables:
NOTE: Environment variables set in
before_script
orscript
are not available for expanding in the same job. Read more about potentially making variables available for expanding.prepare_job: stage: prepare # This stage must run before the release stage rules: - if: $CI_COMMIT_TAG when: never # Do not run this job when a tag is created manually - if: $CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH # Run this job when commits are pushed or merged to the default branch script: - echo "EXTRA_DESCRIPTION=some message" >> variables.env # Generate the EXTRA_DESCRIPTION and TAG environment variables - echo "TAG=v$(cat VERSION)" >> variables.env # and append to the variables.env file artifacts: reports: dotenv: variables.env # Use artifacts:reports:dotenv to expose the variables to other jobs release_job: stage: release image: registry.gitlab.com/gitlab-org/release-cli:latest needs: - job: prepare_job artifacts: true rules: - if: $CI_COMMIT_TAG when: never # Do not run this job when a tag is created manually - if: $CI_COMMIT_BRANCH == $CI_DEFAULT_BRANCH # Run this job when commits are pushed or merged to the default branch script: - echo 'running release_job for $TAG' release: name: 'Release $TAG' description: 'Created using the release-cli $EXTRA_DESCRIPTION' # $EXTRA_DESCRIPTION and the $TAG tag_name: '$TAG' # variables must be defined elsewhere ref: '$CI_COMMIT_SHA' # in the pipeline. For example, in the milestones: # prepare_job - 'm1' - 'm2' - 'm3' released_at: '2020-07-15T08:00:00Z' # Optional, is auto generated if not defined, or can use a variable.
Release assets as Generic packages
You can use Generic packages to host your release assets. For a complete example, see the Release assets as Generic packages project.
release-cli
command line
The entries under the release
node are transformed into a bash
command line and sent
to the Docker container, which contains the release-cli.
You can also call the release-cli
directly from a script
entry.
For example, using the YAML described above:
release-cli create --name "Release $CI_COMMIT_SHA" --description "Created using the release-cli $EXTRA_DESCRIPTION" --tag-name "v${MAJOR}.${MINOR}.${REVISION}" --ref "$CI_COMMIT_SHA" --released-at "2020-07-15T08:00:00Z" --milestone "m1" --milestone "m2" --milestone "m3"
secrets
Introduced in GitLab 13.4.
secrets
indicates the CI/CD Secrets this job needs. It should be a hash,
and the keys should be the names of the variables that are made available to the job.
The value of each secret is saved in a temporary file. This file's path is stored in these
variables.
secrets:vault
(PREMIUM)
Introduced in GitLab 13.4.
vault
keyword specifies secrets provided by Hashicorp's Vault.
This syntax has multiple forms. The shortest form assumes the use of the
KV-V2 secrets engine,
mounted at the default path kv-v2
. The last part of the secret's path is the
field to fetch the value for:
job:
secrets:
DATABASE_PASSWORD:
vault: production/db/password # translates to secret `kv-v2/data/production/db`, field `password`
You can specify a custom secrets engine path by adding a suffix starting with @
:
job:
secrets:
DATABASE_PASSWORD:
vault: production/db/password@ops # translates to secret `ops/data/production/db`, field `password`
In the detailed form of the syntax, you can specify all details explicitly:
job:
secrets:
DATABASE_PASSWORD: # translates to secret `ops/data/production/db`, field `password`
vault:
engine:
name: kv-v2
path: ops
path: production/db
field: password
pages
pages
is a special job that uploads static content to GitLab that
is then published as a website. It has a special syntax, so the two
requirements below must be met:
- Any static content must be placed under a
public/
directory. artifacts
with a path to thepublic/
directory must be defined.
The example below moves all files from the root of the project to the
public/
directory. The .public
workaround is so cp
does not also copy
public/
to itself in an infinite loop:
pages:
stage: deploy
script:
- mkdir .public
- cp -r * .public
- mv .public public
artifacts:
paths:
- public
only:
- master
Read more on GitLab Pages user documentation.
variables
Introduced in GitLab Runner v0.5.0.
CI/CD variables are configurable values that are passed to jobs. They can be set globally and per-job.
There are two types of variables.
- Custom variables:
You can define their values in the
.gitlab-ci.yml
file, in the GitLab UI, or by using the API. You can also input variables in the GitLab UI when running a pipeline manually. - Predefined variables:
These values are set by the runner itself.
One example is
CI_COMMIT_REF_NAME
, which is the branch or tag the project is built for.
After you define a variable, you can use it in all executed commands and scripts.
Variables are meant for non-sensitive project configuration, for example:
variables:
DEPLOY_SITE: "https://example.com/"
deploy_job:
stage: deploy
script:
- deploy-script --url $DEPLOY_SITE --path "/"
deploy_review_job:
stage: deploy
variables:
REVIEW_PATH: "/review"
script:
- deploy-review-script --url $DEPLOY_SITE --path $REVIEW_PATH
You can use only integers and strings for the variable's name and value.
If you define a variable at the top level of the gitlab-ci.yml
file, it is global,
meaning it applies to all jobs. If you define a variable in a job, it's available
to that job only.
If a variable of the same name is defined globally and for a specific job, the job-specific variable overrides the global variable.
All YAML-defined variables are also set to any linked Docker service containers.
You can use YAML anchors for variables.
Prefill variables in manual pipelines
Introduced in GitLab 13.7.
You can use the value
and description
keywords to define variables that are prefilled
when running a pipeline manually:
variables:
DEPLOY_ENVIRONMENT:
value: "staging" # Deploy to staging by default
description: "The deployment target. Change this variable to 'canary' or 'production' if needed."
Configure runner behavior with variables
You can use CI/CD variables to configure runner Git behavior:
GIT_STRATEGY
GIT_SUBMODULE_STRATEGY
GIT_CHECKOUT
GIT_CLEAN_FLAGS
GIT_FETCH_EXTRA_FLAGS
GIT_DEPTH
(shallow cloning)GIT_CLONE_PATH
(custom build directories)TRANSFER_METER_FREQUENCY
(artifact/cache meter update frequency)ARTIFACT_COMPRESSION_LEVEL
(artifact archiver compression level)CACHE_COMPRESSION_LEVEL
(cache archiver compression level)
You can also use variables to configure how many times a runner attempts certain stages of job execution.
Special YAML features
It's possible to use special YAML features like anchors (&
), aliases (*
)
and map merging (<<
). Use these features to reduce the complexity
of the code in the .gitlab-ci.yml
file.
Read more about the various YAML features.
In most cases, the extends
keyword is more user friendly and should
be used over these special YAML features.
You can use YAML anchors to merge YAML arrays.
Anchors
YAML has a feature called 'anchors' that you can use to duplicate content across your document.
Use anchors to duplicate or inherit properties. Use anchors with hidden jobs to provide templates for your jobs. When there are duplicate keys, GitLab performs a reverse deep merge based on the keys.
You can't use YAML anchors across multiple files when leveraging the include
feature. Anchors are only valid in the file they were defined in. Instead
of using YAML anchors, you can use the extends
keyword.
The following example uses anchors and map merging. It creates two jobs,
test1
and test2
, that inherit the .job_template
configuration, each
with their own custom script
defined:
.job_template: &job_configuration # Hidden yaml configuration that defines an anchor named 'job_configuration'
image: ruby:2.6
services:
- postgres
- redis
test1:
<<: *job_configuration # Merge the contents of the 'job_configuration' alias
script:
- test1 project
test2:
<<: *job_configuration # Merge the contents of the 'job_configuration' alias
script:
- test2 project
&
sets up the name of the anchor (job_configuration
), <<
means "merge the
given hash into the current one", and *
includes the named anchor
(job_configuration
again). The expanded version of the example above is:
.job_template:
image: ruby:2.6
services:
- postgres
- redis
test1:
image: ruby:2.6
services:
- postgres
- redis
script:
- test1 project
test2:
image: ruby:2.6
services:
- postgres
- redis
script:
- test2 project
You can use anchors to define two sets of services. For example, test:postgres
and test:mysql
share the script
defined in .job_template
, but use different
services
, defined in .postgres_services
and .mysql_services
:
.job_template: &job_configuration
script:
- test project
tags:
- dev
.postgres_services:
services: &postgres_configuration
- postgres
- ruby
.mysql_services:
services: &mysql_configuration
- mysql
- ruby
test:postgres:
<<: *job_configuration
services: *postgres_configuration
tags:
- postgres
test:mysql:
<<: *job_configuration
services: *mysql_configuration
The expanded version is:
.job_template:
script:
- test project
tags:
- dev
.postgres_services:
services:
- postgres
- ruby
.mysql_services:
services:
- mysql
- ruby
test:postgres:
script:
- test project
services:
- postgres
- ruby
tags:
- postgres
test:mysql:
script:
- test project
services:
- mysql
- ruby
tags:
- dev
You can see that the hidden jobs are conveniently used as templates, and
tags: [postgres]
overwrites tags: [dev]
.
YAML anchors for scripts
Introduced in GitLab 12.5.
You can use YAML anchors with script, before_script
,
and after_script
to use predefined commands in multiple jobs:
.some-script-before: &some-script-before
- echo "Execute this script first"
.some-script: &some-script
- echo "Execute this script second"
- echo "Execute this script too"
.some-script-after: &some-script-after
- echo "Execute this script last"
job1:
before_script:
- *some-script-before
script:
- *some-script
- echo "Execute something, for this job only"
after_script:
- *some-script-after
job2:
script:
- *some-script-before
- *some-script
- echo "Execute something else, for this job only"
- *some-script-after
YAML anchors for variables
Use YAML anchors with variables
to repeat assignment
of variables across multiple jobs. You can also use YAML anchors when a job
requires a specific variables
block that would otherwise override the global variables.
In the example below, we override the GIT_STRATEGY
variable without affecting
the use of the SAMPLE_VARIABLE
variable:
# global variables
variables: &global-variables
SAMPLE_VARIABLE: sample_variable_value
ANOTHER_SAMPLE_VARIABLE: another_sample_variable_value
# a job that must set the GIT_STRATEGY variable, yet depend on global variables
job_no_git_strategy:
stage: cleanup
variables:
<<: *global-variables
GIT_STRATEGY: none
script: echo $SAMPLE_VARIABLE
Hide jobs
If you want to temporarily 'disable' a job, rather than commenting out all the lines where the job is defined:
# hidden_job:
# script:
# - run test
Instead, you can start its name with a dot (.
) and it is not processed by
GitLab CI/CD. In the following example, .hidden_job
is ignored:
.hidden_job:
script:
- run test
Use this feature to ignore jobs, or use the special YAML features and transform the hidden jobs into templates.
!reference
tags
- Introduced in GitLab 13.9.
Use the !reference
custom YAML tag to select keyword configuration from other job
sections and reuse it in the current section. Unlike YAML anchors, you can
use !reference
tags to reuse configuration from included configuration
files as well.
In this example, a script
and an after_script
from two different locations are
reused in the test
job:
-
setup.yml
:.setup: script: - echo creating environment
-
.gitlab-ci.yml
:include: - local: setup.yml .teardown: after_script: - echo deleting environment test: script: - !reference [.setup, script] - echo running my own command after_script: - !reference [.teardown, after_script]
In this example, test-vars-1
reuses the all the variables in .vars
, while test-vars-2
selects a specific variable and reuses it as a new MY_VAR
variable.
.vars:
variables:
URL: "http://my-url.internal"
IMPORTANT_VAR: "the details"
test-vars-1:
variables: !reference [.vars, variables]
script:
- printenv
test-vars-2:
variables:
MY_VAR: !reference [.vars, variables, IMPORTANT_VAR]
script:
- printenv
You can't reuse a section that already includes a !reference
tag. Only one level
of nesting is supported.
Skip Pipeline
To push a commit without triggering a pipeline, add [ci skip]
or [skip ci]
, using any
capitalization, to your commit message.
Alternatively, if you are using Git 2.10 or later, use the ci.skip
Git push option.
The ci.skip
push option does not skip merge request
pipelines.
Processing Git pushes
GitLab creates at most four branch and tag pipelines when
pushing multiple changes in a single git push
invocation.
This limitation does not affect any of the updated merge request pipelines. All updated merge requests have a pipeline created when using pipelines for merge requests.
Deprecated keywords
The following keywords are deprecated.
Globally-defined types
WARNING:
types
is deprecated, and could be removed in a future release.
Use stages
instead.
Job-defined type
WARNING:
type
is deprecated, and could be removed in one of the future releases.
Use stage
instead.
Globally-defined image
, services
, cache
, before_script
, after_script
Defining image
, services
, cache
, before_script
, and
after_script
globally is deprecated. Support could be removed
from a future release.
Use default:
instead. For example:
default:
image: ruby:2.5
services:
- docker:dind
cache:
paths: [vendor/]
before_script:
- bundle install --path vendor/
after_script:
- rm -rf tmp/