debian-mirror-gitlab/vendor/gems/ipynbdiff/spec/testdata/to.ipynb
2022-08-13 15:12:31 +05:30

200 lines
4.1 KiB
Text

{
"cells": [
{
"cell_type": "markdown",
"id": "0aac5da7-745c-4eda-847a-3d0d07a1bb9b",
"metadata": {
"tags": []
},
"source": [
"# This is a markdown cell\n",
"\n",
"This paragraph has\n",
"With\n",
"Many\n",
"Lines. How we will he handle MR notes?\n",
"\n",
"But I can add another paragraph\n",
"\n",
"Another paragraph added"
]
},
{
"cell_type": "raw",
"id": "faecea5b-de0a-49fa-9a3a-61c2add652da",
"metadata": {},
"source": [
"This is a raw cell\n",
"With\n",
"Multiple lines"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "893ca2c0-ab75-4276-9dad-be1c40e16e8a",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0d707fb5-226f-46d6-80bd-489ebfb8905c",
"metadata": {},
"outputs": [],
"source": [
"np.random.seed(42)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "35467fcf-28b1-4c7b-bb09-4cb192c35293",
"metadata": {
"tags": [
"senoid"
]
},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x12a4e43d0>]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "another_invalid_base64_image_here\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x = np.linspace(0, 4*np.pi,50)\n",
"y = 2 * np.sin(x)\n",
"\n",
"plt.plot(x, y)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "dc1178cd-c46d-4da3-9ab5-08f000699884",
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame({\"x\": x, \"y\": y})"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6e749b4f-b409-4700-870f-f68c39462490",
"metadata": {
"tags": [
"some-table"
]
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>x</th>\n",
" <th>y</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0.256457</td>\n",
" <td>0.507309</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" x y\n",
"0 0.000000 0.000000\n",
"1 0.256457 0.507309"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[:2]"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0ddef5ef-94a3-4afd-9c70-ddee9694f512",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "New Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"toc-showtags": true
},
"nbformat": 4,
"nbformat_minor": 5
}