debian-mirror-gitlab/doc/ci/yaml
2019-05-30 16:15:17 +05:30
..
README.md New upstream version 11.8.10+dfsg 2019-05-30 16:15:17 +05:30

Configuration of your jobs with .gitlab-ci.yml

This document describes the usage of .gitlab-ci.yml, the file that is used by GitLab Runner to manage your project's jobs.

From version 7.12, GitLab CI uses a YAML file (.gitlab-ci.yml) for the project configuration. It is placed in the root of your repository and contains definitions of how your project should be built.

If you want a quick introduction to GitLab CI, follow our quick start guide.

NOTE: Note: If you have a mirrored repository where GitLab pulls from, you may need to enable pipeline triggering in your project's Settings > Repository > Pull from a remote repository > Trigger pipelines for mirror updates.

Jobs

The YAML file defines a set of jobs with constraints stating when they should be run. You can specify an unlimited number of jobs which are defined as top-level elements with an arbitrary name and always have to contain at least the script clause.

job1:
  script: "execute-script-for-job1"

job2:
  script: "execute-script-for-job2"

The above example is the simplest possible CI/CD configuration with two separate jobs, where each of the jobs executes a different command. Of course a command can execute code directly (./configure;make;make install) or run a script (test.sh) in the repository.

Jobs are picked up by Runners and executed within the environment of the Runner. What is important, is that each job is run independently from each other.

Each job must have a unique name, but there are a few reserved keywords that cannot be used as job names:

  • image
  • services
  • stages
  • types
  • before_script
  • after_script
  • variables
  • cache

A job is defined by a list of parameters that define the job behavior.

Keyword Required Description
script yes Defines a shell script which is executed by Runner
extends no Defines a configuration entry that this job is going to inherit from
include no Defines a configuration entry that allows this job to include external YAML files
image no Use docker image, covered in Using Docker Images
services no Use docker services, covered in Using Docker Images
stage no Defines a job stage (default: test)
type no Alias for stage
variables no Define job variables on a job level
only no Defines a list of git refs for which job is created
except no Defines a list of git refs for which job is not created
tags no Defines a list of tags which are used to select Runner
allow_failure no Allow job to fail. Failed job doesn't contribute to commit status
when no Define when to run job. Can be on_success, on_failure, always or manual
dependencies no Define other jobs that a job depends on so that you can pass artifacts between them
artifacts no Define list of job artifacts
cache no Define list of files that should be cached between subsequent runs
before_script no Override a set of commands that are executed before job
after_script no Override a set of commands that are executed after job
environment no Defines a name of environment to which deployment is done by this job
coverage no Define code coverage settings for a given job
retry no Define when and how many times a job can be auto-retried in case of a failure
parallel no Defines how many instances of a job should be run in parallel

image and services

This allows to specify a custom Docker image and a list of services that can be used for time of the job. The configuration of this feature is covered in a separate document.

before_script and after_script

Introduced in GitLab 8.7 and requires GitLab Runner v1.2

before_script is used to define the command that should be run before all jobs, including deploy jobs, but after the restoration of artifacts. This can be an array or a multi-line string.

after_script is used to define the command that will be run after all jobs, including failed ones. This has to be an array or a multi-line string.

The before_script and the main script are concatenated and run in a single context/container. The after_script is run separately, so depending on the executor, changes done outside of the working tree might not be visible, e.g. software installed in the before_script.

It's possible to overwrite the globally defined before_script and after_script if you set it per-job:

before_script:
  - global before script

job:
  before_script:
    - execute this instead of global before script
  script:
    - my command
  after_script:
    - execute this after my script

stages

stages is used to define stages that can be used by jobs and is defined globally.

The specification of stages allows for having flexible multi stage pipelines. The ordering of elements in stages defines the ordering of jobs' execution:

  1. Jobs of the same stage are run in parallel.
  2. Jobs of the next stage are run after the jobs from the previous stage complete successfully.

Let's consider the following example, which defines 3 stages:

stages:
  - build
  - test
  - deploy
  1. First, all jobs of build are executed in parallel.
  2. If all jobs of build succeed, the test jobs are executed in parallel.
  3. If all jobs of test succeed, the deploy jobs are executed in parallel.
  4. If all jobs of deploy succeed, the commit is marked as passed.
  5. If any of the previous jobs fails, the commit is marked as failed and no jobs of further stage are executed.

There are also two edge cases worth mentioning:

  1. If no stages are defined in .gitlab-ci.yml, then the build, test and deploy are allowed to be used as job's stage by default.
  2. If a job doesn't specify a stage, the job is assigned the test stage.

stage

stage is defined per-job and relies on stages which is defined globally. It allows to group jobs into different stages, and jobs of the same stage are executed in parallel. For example:

stages:
  - build
  - test
  - deploy

job 1:
  stage: build
  script: make build dependencies

job 2:
  stage: build
  script: make build artifacts

job 3:
  stage: test
  script: make test

job 4:
  stage: deploy
  script: make deploy

types

CAUTION: Deprecated: types is deprecated, and could be removed in one of the future releases. Use stages instead.

script

script is the only required keyword that a job needs. It's a shell script which is executed by the Runner. For example:

job:
  script: "bundle exec rspec"

This parameter can also contain several commands using an array:

job:
  script:
    - uname -a
    - bundle exec rspec

Sometimes, script commands will need to be wrapped in single or double quotes. For example, commands that contain a colon (:) need to be wrapped in quotes so that the YAML parser knows to interpret the whole thing as a string rather than a "key: value" pair. Be careful when using special characters: :, {, }, [, ], ,, &, *, #, ?, |, -, <, >, =, !, %, @, `.

only and except (simplified)

only and except are two parameters that set a job policy to limit when jobs are created:

  1. only defines the names of branches and tags for which the job will run.
  2. except defines the names of branches and tags for which the job will not run.

There are a few rules that apply to the usage of job policy:

  • only and except are inclusive. If both only and except are defined in a job specification, the ref is filtered by only and except.
  • only and except allow the use of regular expressions (using Ruby regexp syntax).
  • only and except allow to specify a repository path to filter jobs for forks.

In addition, only and except allow the use of special keywords:

Value Description
branches When a git reference of a pipeline is a branch.
tags When a git reference of a pipeline is a tag.
api When pipeline has been triggered by a second pipelines API (not triggers API).
external When using CI services other than GitLab.
pipelines For multi-project triggers, created using the API with CI_JOB_TOKEN.
pushes Pipeline is triggered by a git push by the user.
schedules For scheduled pipelines.
triggers For pipelines created using a trigger token.
web For pipelines created using Run pipeline button in GitLab UI (under your project's Pipelines).
merge_requests When a merge request is created or updated (See pipelines for merge requests).

In the example below, job will run only for refs that start with issue-, whereas all branches will be skipped:

job:
  # use regexp
  only:
    - /^issue-.*$/
  # use special keyword
  except:
    - branches

Pattern matching is case-sensitive by default. Use i flag modifier, like /pattern/i to make a pattern case-insensitive:

job:
  # use regexp
  only:
    - /^issue-.*$/i
  # use special keyword
  except:
    - branches

In this example, job will run only for refs that are tagged, or if a build is explicitly requested via an API trigger or a Pipeline Schedule:

job:
  # use special keywords
  only:
    - tags
    - triggers
    - schedules

The repository path can be used to have jobs executed only for the parent repository and not forks:

job:
  only:
    - branches@gitlab-org/gitlab-ce
  except:
    - master@gitlab-org/gitlab-ce

The above example will run job for all branches on gitlab-org/gitlab-ce, except master.

If a job does not have an only rule, only: ['branches', 'tags'] is set by default. If it doesn't have an except rule, it is empty.

For example,

job:
  script: echo 'test'

is translated to:

job:
  script: echo 'test'
  only: ['branches', 'tags']

only and except (complex)

  • refs and kubernetes policies introduced in GitLab 10.0.
  • variables policy introduced in GitLab 10.7.
  • changes policy introduced in GitLab 11.4.

CAUTION: Warning: This an alpha feature, and it is subject to change at any time without prior notice!

GitLab supports both simple and complex strategies, so it's possible to use an array and a hash configuration scheme.

Four keys are available:

  • refs
  • variables
  • changes
  • kubernetes

If you use multiple keys under only or except, they act as an AND. The logic is:

(any of refs) AND (any of variables) AND (any of changes) AND (if kubernetes is active)

only:refs and except:refs

The refs strategy can take the same values as the simplified only/except configuration.

In the example below, the deploy job is going to be created only when the pipeline has been scheduled or runs for the master branch:

deploy:
  only:
    refs:
      - master
      - schedules

only:kubernetes and except:kubernetes

The kubernetes strategy accepts only the active keyword.

In the example below, the deploy job is going to be created only when the Kubernetes service is active in the project:

deploy:
  only:
    kubernetes: active

only:variables and except:variables

The variables keyword is used to define variables expressions. In other words, you can use predefined variables / project / group or environment-scoped variables to define an expression GitLab is going to evaluate in order to decide whether a job should be created or not.

Examples of using variables expressions:

deploy:
  script: cap staging deploy
  only:
    refs:
      - branches
    variables:
      - $RELEASE == "staging"
      - $STAGING

Another use case is excluding jobs depending on a commit message:

end-to-end:
  script: rake test:end-to-end
  except:
    variables:
      - $CI_COMMIT_MESSAGE =~ /skip-end-to-end-tests/

Learn more about variables expressions.

only:changes and except:changes

Using the changes keyword with only or except, makes it possible to define if a job should be created based on files modified by a git push event.

For example:

docker build:
  script: docker build -t my-image:$CI_COMMIT_REF_SLUG .
  only:
    changes:
      - Dockerfile
      - docker/scripts/*
      - dockerfiles/**/*
      - more_scripts/*.{rb,py,sh}

In the scenario above, if you are pushing multiple commits to GitLab to an existing branch, GitLab creates and triggers the docker build job, provided that one of the commits contains changes to either:

  • The Dockerfile file.
  • Any of the files inside docker/scripts/ directory.
  • Any of the files and subdirectories inside the dockerfiles directory.
  • Any of the files with rb, py, sh extensions inside the more_scripts directory.

CAUTION: Warning: There are some caveats when using this feature with new branches and tags. See the section below.

Using changes with new branches and tags

If you are pushing a new branch or a new tag to GitLab, the policy always evaluates to true and GitLab will create a job. This feature is not connected with merge requests yet, and because GitLab is creating pipelines before an user can create a merge request we don't know a target branch at this point.

Without a target branch, it is not possible to know what the common ancestor is, thus we always create a job in that case. This feature works best for stable branches like master because in that case GitLab uses the previous commit that is present in a branch to compare against the latest SHA that was pushed.

tags

tags is used to select specific Runners from the list of all Runners that are allowed to run this project.

During the registration of a Runner, you can specify the Runner's tags, for example ruby, postgres, development.

tags allow you to run jobs with Runners that have the specified tags assigned to them:

job:
  tags:
    - ruby
    - postgres

The specification above, will make sure that job is built by a Runner that has both ruby AND postgres tags defined.

Tags are also a great way to run different jobs on different platforms, for example, given an OS X Runner with tag osx and Windows Runner with tag windows, the following jobs run on respective platforms:

windows job:
  stage:
    - build
  tags:
    - windows
  script:
    - echo Hello, %USERNAME%!

osx job:
  stage:
    - build
  tags:
    - osx
  script:
    - echo "Hello, $USER!"

allow_failure

allow_failure allows a job to fail without impacting the rest of the CI suite. The default value is false, except for manual jobs.

When enabled and the job fails, the job will show an orange warning in the UI. However, the logical flow of the pipeline will consider the job a success/passed, and is not blocked.

Assuming all other jobs are successful, the job's stage and its pipeline will show the same orange warning. However, the associated commit will be marked "passed", without warnings.

In the example below, job1 and job2 will run in parallel, but if job1 fails, it will not stop the next stage from running, since it's marked with allow_failure: true:

job1:
  stage: test
  script:
    - execute_script_that_will_fail
  allow_failure: true

job2:
  stage: test
  script:
    - execute_script_that_will_succeed

job3:
  stage: deploy
  script:
    - deploy_to_staging

when

when is used to implement jobs that are run in case of failure or despite the failure.

when can be set to one of the following values:

  1. on_success - execute job only when all jobs from prior stages succeed (or are considered succeeding because they are marked allow_failure). This is the default.
  2. on_failure - execute job only when at least one job from prior stages fails.
  3. always - execute job regardless of the status of jobs from prior stages.
  4. manual - execute job manually (added in GitLab 8.10). Read about manual actions below.

For example:

stages:
  - build
  - cleanup_build
  - test
  - deploy
  - cleanup

build_job:
  stage: build
  script:
    - make build

cleanup_build_job:
  stage: cleanup_build
  script:
    - cleanup build when failed
  when: on_failure

test_job:
  stage: test
  script:
    - make test

deploy_job:
  stage: deploy
  script:
    - make deploy
  when: manual

cleanup_job:
  stage: cleanup
  script:
    - cleanup after jobs
  when: always

The above script will:

  1. Execute cleanup_build_job only when build_job fails.
  2. Always execute cleanup_job as the last step in pipeline regardless of success or failure.
  3. Allow you to manually execute deploy_job from GitLab's UI.

when:manual

Notes:

  • Introduced in GitLab 8.10.
  • Blocking manual actions were introduced in GitLab 9.0.
  • Protected actions were introduced in GitLab 9.2.

Manual actions are a special type of job that are not executed automatically, they need to be explicitly started by a user. An example usage of manual actions would be a deployment to a production environment. Manual actions can be started from the pipeline, job, environment, and deployment views. Read more at the environments documentation.

Manual actions can be either optional or blocking. Blocking manual actions will block the execution of the pipeline at the stage this action is defined in. It's possible to resume execution of the pipeline when someone executes a blocking manual action by clicking a play button.

When a pipeline is blocked, it will not be merged if Merge When Pipeline Succeeds is set. Blocked pipelines also do have a special status, called manual. Manual actions are non-blocking by default. If you want to make manual action blocking, it is necessary to add allow_failure: false to the job's definition in .gitlab-ci.yml.

Optional manual actions have allow_failure: true set by default and their Statuses do not contribute to the overall pipeline status. So, if a manual action fails, the pipeline will eventually succeed.

Manual actions are considered to be write actions, so permissions for protected branches are used when user wants to trigger an action. In other words, in order to trigger a manual action assigned to a branch that the pipeline is running for, user needs to have ability to merge to this branch.

when:delayed

Introduced in GitLab 11.4.

Delayed job are for executing scripts after a certain period. This is useful if you want to avoid jobs entering pending state immediately.

You can set the period with start_in key. The value of start_in key is an elapsed time in seconds, unless a unit is provided. start_in key must be less than or equal to one hour. Examples of valid values include:

  • 10 seconds
  • 30 minutes
  • 1 hour

When there is a delayed job in a stage, the pipeline will not progress until the delayed job has finished. This means this keyword can also be used for inserting delays between different stages.

The timer of a delayed job starts immediately after the previous stage has completed. Similar to other types of jobs, a delayed job's timer will not start unless the previous stage passed.

The following example creates a job named timed rollout 10% that is executed 30 minutes after the previous stage has completed:

timed rollout 10%:
  stage: deploy
  script: echo 'Rolling out 10% ...'
  when: delayed
  start_in: 30 minutes

You can stop the active timer of a delayed job by clicking the Unschedule button. This job will never be executed in the future unless you execute the job manually.

You can start a delayed job immediately by clicking the Play button. GitLab runner will pick your job soon and start the job.

environment

Notes:

environment is used to define that a job deploys to a specific environment. If environment is specified and no environment under that name exists, a new one will be created automatically.

In its simplest form, the environment keyword can be defined like:

deploy to production:
  stage: deploy
  script: git push production HEAD:master
  environment:
    name: production

In the above example, the deploy to production job will be marked as doing a deployment to the production environment.

environment:name

Notes:

  • Introduced in GitLab 8.11.
  • Before GitLab 8.11, the name of an environment could be defined as a string like environment: production. The recommended way now is to define it under the name keyword.
  • The name parameter can use any of the defined CI variables, including predefined, secure variables and .gitlab-ci.yml variables. You however cannot use variables defined under script.

The environment name can contain:

  • letters
  • digits
  • spaces
  • -
  • _
  • /
  • $
  • {
  • }

Common names are qa, staging, and production, but you can use whatever name works with your workflow.

Instead of defining the name of the environment right after the environment keyword, it is also possible to define it as a separate value. For that, use the name keyword under environment:

deploy to production:
  stage: deploy
  script: git push production HEAD:master
  environment:
    name: production

environment:url

Notes:

  • Introduced in GitLab 8.11.
  • Before GitLab 8.11, the URL could be added only in GitLab's UI. The recommended way now is to define it in .gitlab-ci.yml.
  • The url parameter can use any of the defined CI variables, including predefined, secure variables and .gitlab-ci.yml variables. You however cannot use variables defined under script.

This is an optional value that when set, it exposes buttons in various places in GitLab which when clicked take you to the defined URL.

In the example below, if the job finishes successfully, it will create buttons in the merge requests and in the environments/deployments pages which will point to https://prod.example.com.

deploy to production:
  stage: deploy
  script: git push production HEAD:master
  environment:
    name: production
    url: https://prod.example.com

environment:on_stop

Notes:

  • Introduced in GitLab 8.13.
  • Starting with GitLab 8.14, when you have an environment that has a stop action defined, GitLab will automatically trigger a stop action when the associated branch is deleted.

Closing (stopping) environments can be achieved with the on_stop keyword defined under environment. It declares a different job that runs in order to close the environment.

Read the environment:action section for an example.

environment:action

Introduced in GitLab 8.13.

The action keyword is to be used in conjunction with on_stop and is defined in the job that is called to close the environment.

Take for instance:

review_app:
  stage: deploy
  script: make deploy-app
  environment:
    name: review
    on_stop: stop_review_app

stop_review_app:
  stage: deploy
  script: make delete-app
  when: manual
  environment:
    name: review
    action: stop

In the above example we set up the review_app job to deploy to the review environment, and we also defined a new stop_review_app job under on_stop. Once the review_app job is successfully finished, it will trigger the stop_review_app job based on what is defined under when. In this case we set it up to manual so it will need a manual action via GitLab's web interface in order to run.

The stop_review_app job is required to have the following keywords defined:

  • when - reference
  • environment:name
  • environment:action
  • stage should be the same as the review_app in order for the environment to stop automatically when the branch is deleted

Dynamic environments

Notes:

  • Introduced in GitLab 8.12 and GitLab Runner 1.6.
  • The $CI_ENVIRONMENT_SLUG was introduced in GitLab 8.15.
  • The name and url parameters can use any of the defined CI variables, including predefined, secure variables and .gitlab-ci.yml variables. You however cannot use variables defined under script.

For example:

deploy as review app:
  stage: deploy
  script: make deploy
  environment:
    name: review/$CI_COMMIT_REF_NAME
    url: https://$CI_ENVIRONMENT_SLUG.example.com/

The deploy as review app job will be marked as deployment to dynamically create the review/$CI_COMMIT_REF_NAME environment, where $CI_COMMIT_REF_NAME is an environment variable set by the Runner. The $CI_ENVIRONMENT_SLUG variable is based on the environment name, but suitable for inclusion in URLs. In this case, if the deploy as review app job was run in a branch named pow, this environment would be accessible with an URL like https://review-pow.example.com/.

This of course implies that the underlying server which hosts the application is properly configured.

The common use case is to create dynamic environments for branches and use them as Review Apps. You can see a simple example using Review Apps at https://gitlab.com/gitlab-examples/review-apps-nginx/.

cache

Notes:

  • Introduced in GitLab Runner v0.7.0.
  • cache can be set globally and per-job.
  • From GitLab 9.0, caching is enabled and shared between pipelines and jobs by default.
  • From GitLab 9.2, caches are restored before artifacts.

TIP: Learn more: Read how caching works and find out some good practices in the caching dependencies documentation.

cache is used to specify a list of files and directories which should be cached between jobs. You can only use paths that are within the project workspace.

If cache is defined outside the scope of jobs, it means it is set globally and all jobs will use that definition.

cache:paths

Use the paths directive to choose which files or directories will be cached. Wildcards can be used as well.

Cache all files in binaries that end in .apk and the .config file:

rspec:
  script: test
  cache:
    paths:
      - binaries/*.apk
      - .config

Locally defined cache overrides globally defined options. The following rspec job will cache only binaries/:

cache:
  paths:
    - my/files

rspec:
  script: test
  cache:
    key: rspec
    paths:
      - binaries/

Note that since cache is shared between jobs, if you're using different paths for different jobs, you should also set a different cache:key otherwise cache content can be overwritten.

cache:key

Introduced in GitLab Runner v1.0.0.

Since the cache is shared between jobs, if you're using different paths for different jobs, you should also set a different cache:key otherwise cache content can be overwritten.

The key directive allows you to define the affinity of caching between jobs, allowing to have a single cache for all jobs, cache per-job, cache per-branch or any other way that fits your workflow. This way, you can fine tune caching, allowing you to cache data between different jobs or even different branches.

The cache:key variable can use any of the predefined variables, and the default key, if not set, is just literal default which means everything is shared between each pipelines and jobs by default, starting from GitLab 9.0.

NOTE: Note: The cache:key variable cannot contain the / character, or the equivalent URI-encoded %2F; a value made only of dots (., %2E) is also forbidden.

For example, to enable per-branch caching:

cache:
  key: "$CI_COMMIT_REF_SLUG"
  paths:
    - binaries/

If you use Windows Batch to run your shell scripts you need to replace $ with %:

cache:
  key: "%CI_COMMIT_REF_SLUG%"
  paths:
    - binaries/

cache:untracked

Set untracked: true to cache all files that are untracked in your Git repository:

rspec:
  script: test
  cache:
    untracked: true

Cache all Git untracked files and files in binaries:

rspec:
  script: test
  cache:
    untracked: true
    paths:
      - binaries/

cache:policy

Introduced in GitLab 9.4.

The default behaviour of a caching job is to download the files at the start of execution, and to re-upload them at the end. This allows any changes made by the job to be persisted for future runs, and is known as the pull-push cache policy.

If you know the job doesn't alter the cached files, you can skip the upload step by setting policy: pull in the job specification. Typically, this would be twinned with an ordinary cache job at an earlier stage to ensure the cache is updated from time to time:

stages:
  - setup
  - test

prepare:
  stage: setup
  cache:
    key: gems
    paths:
      - vendor/bundle
  script:
    - bundle install --deployment

rspec:
  stage: test
  cache:
    key: gems
    paths:
      - vendor/bundle
    policy: pull
  script:
    - bundle exec rspec ...

This helps to speed up job execution and reduce load on the cache server, especially when you have a large number of cache-using jobs executing in parallel.

Additionally, if you have a job that unconditionally recreates the cache without reference to its previous contents, you can use policy: push in that job to skip the download step.

artifacts

Notes:

  • Introduced in GitLab Runner v0.7.0 for non-Windows platforms.
  • Windows support was added in GitLab Runner v.1.0.0.
  • From GitLab 9.2, caches are restored before artifacts.
  • Not all executors are supported.
  • Job artifacts are only collected for successful jobs by default.

artifacts is used to specify a list of files and directories which should be attached to the job after success.

The artifacts will be sent to GitLab after the job finishes successfully and will be available for download in the GitLab UI.

Read more about artifacts.

artifacts:paths

You can only use paths that are within the project workspace. To pass artifacts between different jobs, see dependencies.

Send all files in binaries and .config:

artifacts:
  paths:
    - binaries/
    - .config

To disable artifact passing, define the job with empty dependencies:

job:
  stage: build
  script: make build
  dependencies: []

You may want to create artifacts only for tagged releases to avoid filling the build server storage with temporary build artifacts.

Create artifacts only for tags (default-job will not create artifacts):

default-job:
  script:
    - mvn test -U
  except:
    - tags

release-job:
  script:
    - mvn package -U
  artifacts:
    paths:
      - target/*.war
  only:
    - tags

artifacts:name

Introduced in GitLab 8.6 and GitLab Runner v1.1.0.

The name directive allows you to define the name of the created artifacts archive. That way, you can have a unique name for every archive which could be useful when you'd like to download the archive from GitLab. The artifacts:name variable can make use of any of the predefined variables. The default name is artifacts, which becomes artifacts.zip when downloaded.

NOTE: Note: If your branch-name contains forward slashes (e.g. feature/my-feature) it is advised to use $CI_COMMIT_REF_SLUG instead of $CI_COMMIT_REF_NAME for proper naming of the artifact.

To create an archive with a name of the current job:

job:
  artifacts:
    name: "$CI_JOB_NAME"
    paths:
      - binaries/

To create an archive with a name of the current branch or tag including only the binaries directory:

job:
  artifacts:
    name: "$CI_COMMIT_REF_NAME"
    paths:
      - binaries/

To create an archive with a name of the current job and the current branch or tag including only the binaries directory:

job:
  artifacts:
    name: "$CI_JOB_NAME-$CI_COMMIT_REF_NAME"
    paths:
      - binaries/

To create an archive with a name of the current stage and branch name:

job:
  artifacts:
    name: "$CI_JOB_STAGE-$CI_COMMIT_REF_NAME"
    paths:
      - binaries/

If you use Windows Batch to run your shell scripts you need to replace $ with %:

job:
  artifacts:
    name: "%CI_JOB_STAGE%-%CI_COMMIT_REF_NAME%"
    paths:
      - binaries/

If you use Windows PowerShell to run your shell scripts you need to replace $ with $env::

job:
  artifacts:
    name: "$env:CI_JOB_STAGE-$env:CI_COMMIT_REF_NAME"
    paths:
      - binaries/

artifacts:untracked

artifacts:untracked is used to add all Git untracked files as artifacts (along to the paths defined in artifacts:paths).

NOTE: Note: To exclude the folders/files which should not be a part of untracked just add them to .gitignore.

Send all Git untracked files:

artifacts:
  untracked: true

Send all Git untracked files and files in binaries:

artifacts:
  untracked: true
  paths:
    - binaries/

artifacts:when

Introduced in GitLab 8.9 and GitLab Runner v1.3.0.

artifacts:when is used to upload artifacts on job failure or despite the failure.

artifacts:when can be set to one of the following values:

  1. on_success - upload artifacts only when the job succeeds. This is the default.
  2. on_failure - upload artifacts only when the job fails.
  3. always - upload artifacts regardless of the job status.

To upload artifacts only when job fails:

job:
  artifacts:
    when: on_failure

artifacts:expire_in

Introduced in GitLab 8.9 and GitLab Runner v1.3.0.

expire_in allows you to specify how long artifacts should live before they expire and therefore deleted, counting from the time they are uploaded and stored on GitLab. If the expiry time is not defined, it defaults to the instance wide setting (30 days by default, forever on GitLab.com).

You can use the Keep button on the job page to override expiration and keep artifacts forever.

After their expiry, artifacts are deleted hourly by default (via a cron job), and are not accessible anymore.

The value of expire_in is an elapsed time in seconds, unless a unit is provided. Examples of parsable values:

  • '42'
  • '3 mins 4 sec'
  • '2 hrs 20 min'
  • '2h20min'
  • '6 mos 1 day'
  • '47 yrs 6 mos and 4d'
  • '3 weeks and 2 days'

To expire artifacts 1 week after being uploaded:

job:
  artifacts:
    expire_in: 1 week

artifacts:reports

Introduced in GitLab 11.2. Requires GitLab Runner 11.2 and above.

The reports keyword is used for collecting test reports from jobs and exposing them in GitLab's UI (merge requests, pipeline views). Read how to use this with JUnit reports.

NOTE: Note: The test reports are collected regardless of the job results (success or failure). You can use artifacts:expire_in to set up an expiration date for their artifacts.

NOTE: Note: If you also want the ability to browse the report output files, include the artifacts:paths keyword.

artifacts:reports:junit

Introduced in GitLab 11.2. Requires GitLab Runner 11.2 and above.

The junit report collects JUnit XML files as artifacts. Although JUnit was originally developed in Java, there are many third party ports for other languages like JavaScript, Python, Ruby, etc.

See JUnit test reports for more details and examples. Below is an example of collecting a JUnit XML file from Ruby's RSpec test tool:

rspec:
  stage: test
  script:
  - bundle install
  - rspec --format RspecJunitFormatter --out rspec.xml
  artifacts:
    reports:
      junit: rspec.xml

The collected JUnit reports will be uploaded to GitLab as an artifact and will be automatically shown in merge requests.

NOTE: Note: In case the JUnit tool you use exports to multiple XML files, you can specify multiple test report paths within a single job and they will be automatically concatenated into a single file. Use a filename pattern (junit: rspec-*.xml), an array of filenames (junit: [rspec-1.xml, rspec-2.xml, rspec-3.xml]), or a combination thereof (junit: [rspec.xml, test-results/TEST-*.xml]).

artifacts:reports:codequality [STARTER]

Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.

The codequality report collects CodeQuality issues as artifacts.

The collected Code Quality report will be uploaded to GitLab as an artifact and will be automatically shown in merge requests.

artifacts:reports:sast [ULTIMATE]

Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.

The sast report collects SAST vulnerabilities as artifacts.

The collected SAST report will be uploaded to GitLab as an artifact and will be automatically shown in merge requests, pipeline view and provide data for security dashboards.

artifacts:reports:dependency_scanning [ULTIMATE]

Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.

The dependency_scanning report collects Dependency Scanning vulnerabilities as artifacts.

The collected Dependency Scanning report will be uploaded to GitLab as an artifact and will be automatically shown in merge requests, pipeline view and provide data for security dashboards.

artifacts:reports:container_scanning [ULTIMATE]

Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.

The container_scanning report collects Container Scanning vulnerabilities as artifacts.

The collected Container Scanning report will be uploaded to GitLab as an artifact and will be automatically shown in merge requests, pipeline view and provide data for security dashboards.

artifacts:reports:dast [ULTIMATE]

Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.

The dast report collects DAST vulnerabilities as artifacts.

The collected DAST report will be uploaded to GitLab as an artifact and will be automatically shown in merge requests, pipeline view and provide data for security dashboards.

artifacts:reports:license_management [ULTIMATE]

Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.

The license_management report collects Licenses as artifacts.

The collected License Management report will be uploaded to GitLab as an artifact and will be automatically shown in merge requests, pipeline view and provide data for security dashboards.

artifacts:reports:performance [PREMIUM]

Introduced in GitLab 11.5. Requires GitLab Runner 11.5 and above.

The performance report collects Performance metrics as artifacts.

The collected Performance report will be uploaded to GitLab as an artifact and will be automatically shown in merge requests.

dependencies

Introduced in GitLab 8.6 and GitLab Runner v1.1.1.

This feature should be used in conjunction with artifacts and allows you to define the artifacts to pass between different jobs.

Note that artifacts from all previous stages are passed by default.

To use this feature, define dependencies in context of the job and pass a list of all previous jobs from which the artifacts should be downloaded. You can only define jobs from stages that are executed before the current one. An error will be shown if you define jobs from the current stage or next ones. Defining an empty array will skip downloading any artifacts for that job. The status of the previous job is not considered when using dependencies, so if it failed or it is a manual job that was not run, no error occurs.


In the following example, we define two jobs with artifacts, build:osx and build:linux. When the test:osx is executed, the artifacts from build:osx will be downloaded and extracted in the context of the build. The same happens for test:linux and artifacts from build:linux.

The job deploy will download artifacts from all previous jobs because of the stage precedence:

build:osx:
  stage: build
  script: make build:osx
  artifacts:
    paths:
      - binaries/

build:linux:
  stage: build
  script: make build:linux
  artifacts:
    paths:
      - binaries/

test:osx:
  stage: test
  script: make test:osx
  dependencies:
    - build:osx

test:linux:
  stage: test
  script: make test:linux
  dependencies:
    - build:linux

deploy:
  stage: deploy
  script: make deploy

When a dependent job will fail

Introduced in GitLab 10.3.

If the artifacts of the job that is set as a dependency have been expired or erased, then the dependent job will fail.

NOTE: Note: You can ask your administrator to flip this switch and bring back the old behavior.

coverage

Introduced in GitLab 8.17.

coverage allows you to configure how code coverage will be extracted from the job output.

Regular expressions are the only valid kind of value expected here. So, using surrounding / is mandatory in order to consistently and explicitly represent a regular expression string. You must escape special characters if you want to match them literally.

A simple example:

job1:
  script: rspec
  coverage: '/Code coverage: \d+\.\d+/'

retry

Introduced in GitLab 9.5. Behaviour expanded in GitLab 11.5 to control on which failures to retry.

retry allows you to configure how many times a job is going to be retried in case of a failure.

When a job fails and has retry configured, it is going to be processed again up to the amount of times specified by the retry keyword.

If retry is set to 2, and a job succeeds in a second run (first retry), it won't be retried again. retry value has to be a positive integer, equal or larger than 0, but lower or equal to 2 (two retries maximum, three runs in total).

A simple example to retry in all failure cases:

test:
  script: rspec
  retry: 2

By default, a job will be retried on all failure cases. To have a better control on which failures to retry, retry can be a hash with the following keys:

  • max: The maximum number of retries.
  • when: The failure cases to retry.

To retry only runner system failures at maximum two times:

test:
  script: rspec
  retry:
    max: 2
    when: runner_system_failure

If there is another failure, other than a runner system failure, the job will not be retried.

To retry on multiple failure cases, when can also be an array of failures:

test:
  script: rspec
  retry:
    max: 2
    when:
      - runner_system_failure
      - stuck_or_timeout_failure

Possible values for when are:

  • always: Retry on any failure (default).
  • unknown_failure: Retry when the failure reason is unknown.
  • script_failure: Retry when the script failed.
  • api_failure: Retry on API failure.
  • stuck_or_timeout_failure: Retry when the job got stuck or timed out.
  • runner_system_failure: Retry if there was a runner system failure (e.g. setting up the job failed).
  • missing_dependency_failure: Retry if a dependency was missing.
  • runner_unsupported: Retry if the runner was unsupported.

parallel

Introduced in GitLab 11.5.

parallel allows you to configure how many instances of a job to run in parallel. This value has to be greater than or equal to two (2) and less than or equal to 50.

This creates N instances of the same job that run in parallel. They're named sequentially from job_name 1/N to job_name N/N.

For every job, CI_NODE_INDEX and CI_NODE_TOTAL environment variables are set.

A simple example:

test:
  script: rspec
  parallel: 5

include

  • Introduced in GitLab Premium 10.5.
  • Available for Starter, Premium and Ultimate since 10.6.
  • Moved to GitLab Core in 11.4.

Using the include keyword, you can allow the inclusion of external YAML files. include requires the external YAML file to have the extensions .yml or .yaml, otherwise the external file will not be included.

The files defined in include are:

  • Deep merged with those in .gitlab-ci.yml.
  • Always evaluated first and merged with the content of .gitlab-ci.yml, regardless of the position of the include keyword.

TIP: Tip: Use merging to customize and override included CI/CD configurations with local definitions.

Recursive includes are not supported. Your external files should not use the include keyword as it will be ignored.

NOTE: Note: Using YAML aliases across different YAML files sourced by include is not supported. You must only refer to aliases in the same file. Instead of using YAML anchors, you can use the extends keyword.

include supports four include methods:

See usage examples.

include:local

include:local includes a file from the same repository as .gitlab-ci.yml. It's referenced using full paths relative to the root directory (/).

You can only use files that are currently tracked by Git on the same branch your configuration file is on. In other words, when using a include:local, make sure that both .gitlab-ci.yml and the local file are on the same branch.

NOTE: Note: Including local files through Git submodules paths is not supported.

Example:

include:
  - local: '/templates/.gitlab-ci-template.yml'

include:file

Introduced in GitLab 11.7.

To include files from another private project under the same GitLab instance, use include:file. This file is referenced using full paths relative to the root directory (/). For example:

include:
  - project: 'my-group/my-project'
    file: '/templates/.gitlab-ci-template.yml'

You can also specify ref, with the default being the HEAD of the project:

include:
  - project: 'my-group/my-project'
    ref: master
    file: '/templates/.gitlab-ci-template.yml'

  - project: 'my-group/my-project'
    ref: v1.0.0
    file: '/templates/.gitlab-ci-template.yml'

  - project: 'my-group/my-project'
    ref: 787123b47f14b552955ca2786bc9542ae66fee5b # Git SHA
    file: '/templates/.gitlab-ci-template.yml'

include:template

Introduced in GitLab 11.7.

include:template can be used to include .gitlab-ci.yml templates that are shipped with GitLab.

For example:

# File sourced from GitLab's template collection
include:
  - template: Auto-DevOps.gitlab-ci.yml

include:remote

include:remote can be used to include a file from a different location, using HTTP/HTTPS, referenced by using the full URL. The remote file must be publicly accessible through a simple GET request as authentication schemas in the remote URL is not supported. For example:

include:
  - remote: 'https://gitlab.com/awesome-project/raw/master/.gitlab-ci-template.yml'

NOTE: Note for GitLab admins: In order to include files from another repository inside your local network, you may need to enable the Allow requests to the local network from hooks and services checkbox located in the Admin area > Settings > Network > Outbound requests section.

include examples

Here are a few more include examples.

Single string or array of multiple values

You can include your extra YAML file(s) either as a single string or an array of multiple values. The following examples are all valid.

Single string with the include:local method implied:

include: '/templates/.after-script-template.yml'

Array with include method implied:

include:
  - 'https://gitlab.com/awesome-project/raw/master/.before-script-template.yml'
  - '/templates/.after-script-template.yml'

Single string with include method specified explicitly:

include:
  remote: 'https://gitlab.com/awesome-project/raw/master/.before-script-template.yml'

Array with include:remote being the single item:

include:
  - remote: 'https://gitlab.com/awesome-project/raw/master/.before-script-template.yml'

Array with multiple include methods specified explicitly:

include:
  - remote: 'https://gitlab.com/awesome-project/raw/master/.before-script-template.yml'
  - local: '/templates/.after-script-template.yml'
  - template: Auto-DevOps.gitlab-ci.yml

Array mixed syntax:

include:
  - 'https://gitlab.com/awesome-project/raw/master/.before-script-template.yml'
  - '/templates/.after-script-template.yml'
  - template: Auto-DevOps.gitlab-ci.yml
  - project: 'my-group/my-project'
    ref: master
    file: '/templates/.gitlab-ci-template.yml'

Re-using a before_script template

In the following example, the content of .before-script-template.yml will be automatically fetched and evaluated along with the content of .gitlab-ci.yml.

Content of https://gitlab.com/awesome-project/raw/master/.before-script-template.yml:

before_script:
  - apt-get update -qq && apt-get install -y -qq sqlite3 libsqlite3-dev nodejs
  - gem install bundler --no-document
  - bundle install --jobs $(nproc)  "${FLAGS[@]}"

Content of .gitlab-ci.yml:

include: 'https://gitlab.com/awesome-project/raw/master/.before-script-template.yml'

rspec:
  script:
    - bundle exec rspec

Overriding external template values

The following example shows specific YAML-defined variables and details of the production job from an include file being customized in .gitlab-ci.yml.

Content of https://company.com/autodevops-template.yml:

variables:
  POSTGRES_USER: user
  POSTGRES_PASSWORD: testing_password
  POSTGRES_DB: $CI_ENVIRONMENT_SLUG

production:
  stage: production
  script:
    - install_dependencies
    - deploy
  environment:
    name: production
    url: https://$CI_PROJECT_PATH_SLUG.$AUTO_DEVOPS_DOMAIN
  only:
    - master

Content of .gitlab-ci.yml:

include: 'https://company.com/autodevops-template.yml'

image: alpine:latest

variables:
  POSTGRES_USER: root
  POSTGRES_PASSWORD: secure_password

stages:
  - build
  - test
  - production

production:
  environment:
    url: https://domain.com

In this case, the variables POSTGRES_USER and POSTGRES_PASSWORD along with the environment url of the production job defined in autodevops-template.yml have been overridden by new values defined in .gitlab-ci.yml.

The merging lets you extend and override dictionary mappings, but you cannot add or modify items to an included array. For example, to add an additional item to the production job script, you must repeat the existing script items:

Content of https://company.com/autodevops-template.yml:

production:
  stage: production
  script:
    - install_dependencies
    - deploy

Content of .gitlab-ci.yml:

include: 'https://company.com/autodevops-template.yml'

stages:
  - production

production:
  script:
    - install_dependencies
    - deploy
    - notify_owner

In this case, if install_dependencies and deploy were not repeated in .gitlab-ci.yml, they would not be part of the script for the production job in the combined CI configuration.

extends

Introduced in GitLab 11.3.

extends defines an entry name that a job that uses extends is going to inherit from.

It is an alternative to using YAML anchors and is a little more flexible and readable:

.tests:
  script: rake test
  stage: test
  only:
    refs:
      - branches

rspec:
  extends: .tests
  script: rake rspec
  only:
    variables:
      - $RSPEC

In the example above, the rspec job inherits from the .tests template job. GitLab will perform a reverse deep merge based on the keys. GitLab will:

  • Merge the rspec contents into .tests recursively.
  • Not merge the values of the keys.

This results in the following rspec job:

rspec:
  script: rake rspec
  stage: test
  only:
    refs:
      - branches
    variables:
      - $RSPEC

NOTE: Note: Note that script: rake test has been overwritten by script: rake rspec.

If you do want to include the rake test, see before_script and after_script.

.tests in this example is a hidden key, but it's possible to inherit from regular jobs as well.

extends supports multi-level inheritance, however it is not recommended to use more than three levels. The maximum nesting level that is supported is 10. The following example has two levels of inheritance:

.tests:
  only:
    - pushes

.rspec:
  extends: .tests
  script: rake rspec

rspec 1:
  variables:
    RSPEC_SUITE: '1'
  extends: .rspec

rspec 2:
  variables:
    RSPEC_SUITE: '2'
  extends: .rspec

spinach:
  extends: .tests
  script: rake spinach

Using extends and include together

extends works across configuration files combined with include.

For example, if you have a local included.yml file:

.template:
  script:
    - echo Hello!

Then, in .gitlab-ci.yml you can use it like this:

include: included.yml

useTemplate:
  image: alpine
  extends: .template

This will run a job called useTemplate that runs echo Hello! as defined in the .template job, and uses the alpine Docker image as defined in the local job.

pages

pages is a special job that is used to upload static content to GitLab that can be used to serve your website. It has a special syntax, so the two requirements below must be met:

  • Any static content must be placed under a public/ directory.
  • artifacts with a path to the public/ directory must be defined.

The example below simply moves all files from the root of the project to the public/ directory. The .public workaround is so cp doesn't also copy public/ to itself in an infinite loop:

pages:
  stage: deploy
  script:
    - mkdir .public
    - cp -r * .public
    - mv .public public
  artifacts:
    paths:
      - public
  only:
    - master

Read more on GitLab Pages user documentation.

variables

Introduced in GitLab Runner v0.5.0.

NOTE: Note: Integers (as well as strings) are legal both for variable's name and value. Floats are not legal and cannot be used.

GitLab CI/CD allows you to define variables inside .gitlab-ci.yml that are then passed in the job environment. They can be set globally and per-job. When the variables keyword is used on a job level, it overrides the global YAML variables and predefined ones.

They are stored in the Git repository and are meant to store non-sensitive project configuration, for example:

variables:
  DATABASE_URL: "postgres://postgres@postgres/my_database"

These variables can be later used in all executed commands and scripts. The YAML-defined variables are also set to all created service containers, thus allowing to fine tune them.

Except for the user defined variables, there are also the ones set up by the Runner itself. One example would be CI_COMMIT_REF_NAME which has the value of the branch or tag name for which project is built. Apart from the variables you can set in .gitlab-ci.yml, there are also the so called Variables which can be set in GitLab's UI.

Learn more about variables and their priority.

Git strategy

Introduced in GitLab 8.9 as an experimental feature. May change or be removed completely in future releases. GIT_STRATEGY=none requires GitLab Runner v1.7+.

You can set the GIT_STRATEGY used for getting recent application code, either globally or per-job in the variables section. If left unspecified, the default from project settings will be used.

There are three possible values: clone, fetch, and none.

clone is the slowest option. It clones the repository from scratch for every job, ensuring that the project workspace is always pristine.

variables:
  GIT_STRATEGY: clone

fetch is faster as it re-uses the project workspace (falling back to clone if it doesn't exist). git clean is used to undo any changes made by the last job, and git fetch is used to retrieve commits made since the last job ran.

variables:
  GIT_STRATEGY: fetch

none also re-uses the project workspace, but skips all Git operations (including GitLab Runner's pre-clone script, if present). It is mostly useful for jobs that operate exclusively on artifacts (e.g., deploy). Git repository data may be present, but it is certain to be out of date, so you should only rely on files brought into the project workspace from cache or artifacts.

variables:
  GIT_STRATEGY: none

NOTE: Note: GIT_STRATEGY is not supported for Kubernetes executor, but may be in the future. See the support Git strategy with Kubernetes executor feature proposal for updates.

Git submodule strategy

Requires GitLab Runner v1.10+.

The GIT_SUBMODULE_STRATEGY variable is used to control if / how Git submodules are included when fetching the code before a build. You can set them globally or per-job in the variables section.

There are three possible values: none, normal, and recursive:

  • none means that submodules will not be included when fetching the project code. This is the default, which matches the pre-v1.10 behavior.

  • normal means that only the top-level submodules will be included. It is equivalent to:

    git submodule sync
    git submodule update --init
    
  • recursive means that all submodules (including submodules of submodules) will be included. This feature needs Git v1.8.1 and later. When using a GitLab Runner with an executor not based on Docker, make sure the Git version meets that requirement. It is equivalent to:

    git submodule sync --recursive
    git submodule update --init --recursive
    

Note that for this feature to work correctly, the submodules must be configured (in .gitmodules) with either:

  • the HTTP(S) URL of a publicly-accessible repository, or
  • a relative path to another repository on the same GitLab server. See the Git submodules documentation.

Git checkout

Introduced in GitLab Runner 9.3

The GIT_CHECKOUT variable can be used when the GIT_STRATEGY is set to either clone or fetch to specify whether a git checkout should be run. If not specified, it defaults to true. You can set them globally or per-job in the variables section.

If set to false, the Runner will:

  • when doing fetch - update the repository and leave working copy on the current revision,
  • when doing clone - clone the repository and leave working copy on the default branch.

Having this setting set to true will mean that for both clone and fetch strategies the Runner will checkout the working copy to a revision related to the CI pipeline:

variables:
  GIT_STRATEGY: clone
  GIT_CHECKOUT: "false"
script:
  - git checkout master
  - git merge $CI_BUILD_REF_NAME

Job stages attempts

Introduced in GitLab, it requires GitLab Runner v1.9+.

You can set the number for attempts the running job will try to execute each of the following stages:

Variable Description
GET_SOURCES_ATTEMPTS Number of attempts to fetch sources running a job
ARTIFACT_DOWNLOAD_ATTEMPTS Number of attempts to download artifacts running a job
RESTORE_CACHE_ATTEMPTS Number of attempts to restore the cache running a job

The default is one single attempt.

Example:

variables:
  GET_SOURCES_ATTEMPTS: 3

You can set them globally or per-job in the variables section.

Shallow cloning

Introduced in GitLab 8.9 as an experimental feature. May change in future releases or be removed completely.

You can specify the depth of fetching and cloning using GIT_DEPTH. This allows shallow cloning of the repository which can significantly speed up cloning for repositories with a large number of commits or old, large binaries. The value is passed to git fetch and git clone.

Note: If you use a depth of 1 and have a queue of jobs or retry jobs, jobs may fail.

Since Git fetching and cloning is based on a ref, such as a branch name, Runners can't clone a specific commit SHA. If there are multiple jobs in the queue, or you are retrying an old job, the commit to be tested needs to be within the Git history that is cloned. Setting too small a value for GIT_DEPTH can make it impossible to run these old commits. You will see unresolved reference in job logs. You should then reconsider changing GIT_DEPTH to a higher value.

Jobs that rely on git describe may not work correctly when GIT_DEPTH is set since only part of the Git history is present.

To fetch or clone only the last 3 commits:

variables:
  GIT_DEPTH: "3"

You can set it globally or per-job in the variables section.

Special YAML features

It's possible to use special YAML features like anchors (&), aliases (*) and map merging (<<), which will allow you to greatly reduce the complexity of .gitlab-ci.yml.

Read more about the various YAML features.

Hidden keys (jobs)

Introduced in GitLab 8.6 and GitLab Runner v1.1.1.

If you want to temporarily 'disable' a job, rather than commenting out all the lines where the job is defined:

#hidden_job:
#  script:
#    - run test

you can instead start its name with a dot (.) and it will not be processed by GitLab CI. In the following example, .hidden_job will be ignored:

.hidden_job:
  script:
    - run test

Use this feature to ignore jobs, or use the special YAML features and transform the hidden keys into templates.

Anchors

Introduced in GitLab 8.6 and GitLab Runner v1.1.1.

YAML has a handy feature called 'anchors', which lets you easily duplicate content across your document. Anchors can be used to duplicate/inherit properties, and is a perfect example to be used with hidden keys to provide templates for your jobs.

The following example uses anchors and map merging. It will create two jobs, test1 and test2, that will inherit the parameters of .job_template, each having their own custom script defined:

.job_template: &job_definition  # Hidden key that defines an anchor named 'job_definition'
  image: ruby:2.1
  services:
    - postgres
    - redis

test1:
  <<: *job_definition           # Merge the contents of the 'job_definition' alias
  script:
    - test1 project

test2:
  <<: *job_definition           # Merge the contents of the 'job_definition' alias
  script:
    - test2 project

& sets up the name of the anchor (job_definition), << means "merge the given hash into the current one", and * includes the named anchor (job_definition again). The expanded version looks like this:

.job_template:
  image: ruby:2.1
  services:
    - postgres
    - redis

test1:
  image: ruby:2.1
  services:
    - postgres
    - redis
  script:
    - test1 project

test2:
  image: ruby:2.1
  services:
    - postgres
    - redis
  script:
    - test2 project

Let's see another one example. This time we will use anchors to define two sets of services. This will create two jobs, test:postgres and test:mysql, that will share the script directive defined in .job_template, and the services directive defined in .postgres_services and .mysql_services respectively:

.job_template: &job_definition
  script:
    - test project

.postgres_services:
  services: &postgres_definition
    - postgres
    - ruby

.mysql_services:
  services: &mysql_definition
    - mysql
    - ruby

test:postgres:
  <<: *job_definition
  services: *postgres_definition

test:mysql:
  <<: *job_definition
  services: *mysql_definition

The expanded version looks like this:

.job_template:
  script:
    - test project

.postgres_services:
  services:
    - postgres
    - ruby

.mysql_services:
  services:
    - mysql
    - ruby

test:postgres:
  script:
    - test project
  services:
    - postgres
    - ruby

test:mysql:
  script:
    - test project
  services:
    - mysql
    - ruby

You can see that the hidden keys are conveniently used as templates.

Triggers

Triggers can be used to force a rebuild of a specific branch, tag or commit, with an API call.

Read more in the triggers documentation.

Skipping jobs

If your commit message contains [ci skip] or [skip ci], using any capitalization, the commit will be created but the pipeline will be skipped.

Alternatively, one can pass the ci.skip Git push option if using Git 2.10 or newer:

git push -o ci.skip

Validate the .gitlab-ci.yml

Each instance of GitLab CI has an embedded debug tool called Lint, which validates the content of your .gitlab-ci.yml files. You can find the Lint under the page ci/lint of your project namespace (e.g, http://gitlab-example.com/gitlab-org/project-123/-/ci/lint)

Using reserved keywords

If you get validation error when using specific values (e.g., true or false), try to quote them, or change them to a different form (e.g., /bin/true).

Examples

See a list of examples for using GitLab CI/CD with various languages.