112 lines
4.2 KiB
Ruby
112 lines
4.2 KiB
Ruby
# https://www.periscopedata.com/blog/medians-in-sql.html
|
|
module Gitlab
|
|
module Database
|
|
module Median
|
|
def median_datetime(arel_table, query_so_far, column_sym)
|
|
median_queries =
|
|
if Gitlab::Database.postgresql?
|
|
pg_median_datetime_sql(arel_table, query_so_far, column_sym)
|
|
elsif Gitlab::Database.mysql?
|
|
mysql_median_datetime_sql(arel_table, query_so_far, column_sym)
|
|
end
|
|
|
|
results = Array.wrap(median_queries).map do |query|
|
|
ActiveRecord::Base.connection.execute(query)
|
|
end
|
|
extract_median(results).presence
|
|
end
|
|
|
|
def extract_median(results)
|
|
result = results.compact.first
|
|
|
|
if Gitlab::Database.postgresql?
|
|
result = result.first.presence
|
|
median = result['median'] if result
|
|
median.to_f if median
|
|
elsif Gitlab::Database.mysql?
|
|
result.to_a.flatten.first
|
|
end
|
|
end
|
|
|
|
def mysql_median_datetime_sql(arel_table, query_so_far, column_sym)
|
|
query = arel_table.
|
|
from(arel_table.project(Arel.sql('*')).order(arel_table[column_sym]).as(arel_table.table_name)).
|
|
project(average([arel_table[column_sym]], 'median')).
|
|
where(
|
|
Arel::Nodes::Between.new(
|
|
Arel.sql("(select @row_id := @row_id + 1)"),
|
|
Arel::Nodes::And.new(
|
|
[Arel.sql('@ct/2.0'),
|
|
Arel.sql('@ct/2.0 + 1')]
|
|
)
|
|
)
|
|
).
|
|
# Disallow negative values
|
|
where(arel_table[column_sym].gteq(0))
|
|
|
|
[
|
|
Arel.sql("CREATE TEMPORARY TABLE IF NOT EXISTS #{query_so_far.to_sql}"),
|
|
Arel.sql("set @ct := (select count(1) from #{arel_table.table_name});"),
|
|
Arel.sql("set @row_id := 0;"),
|
|
query.to_sql,
|
|
Arel.sql("DROP TEMPORARY TABLE IF EXISTS #{arel_table.table_name};")
|
|
]
|
|
end
|
|
|
|
def pg_median_datetime_sql(arel_table, query_so_far, column_sym)
|
|
# Create a CTE with the column we're operating on, row number (after sorting by the column
|
|
# we're operating on), and count of the table we're operating on (duplicated across) all rows
|
|
# of the CTE. For example, if we're looking to find the median of the `projects.star_count`
|
|
# column, the CTE might look like this:
|
|
#
|
|
# star_count | row_id | ct
|
|
# ------------+--------+----
|
|
# 5 | 1 | 3
|
|
# 9 | 2 | 3
|
|
# 15 | 3 | 3
|
|
cte_table = Arel::Table.new("ordered_records")
|
|
cte = Arel::Nodes::As.new(
|
|
cte_table,
|
|
arel_table.
|
|
project(
|
|
arel_table[column_sym].as(column_sym.to_s),
|
|
Arel::Nodes::Over.new(Arel::Nodes::NamedFunction.new("row_number", []),
|
|
Arel::Nodes::Window.new.order(arel_table[column_sym])).as('row_id'),
|
|
arel_table.project("COUNT(1)").as('ct')).
|
|
# Disallow negative values
|
|
where(arel_table[column_sym].gteq(zero_interval)))
|
|
|
|
# From the CTE, select either the middle row or the middle two rows (this is accomplished
|
|
# by 'where cte.row_id between cte.ct / 2.0 AND cte.ct / 2.0 + 1'). Find the average of the
|
|
# selected rows, and this is the median value.
|
|
cte_table.project(average([extract_epoch(cte_table[column_sym])], "median")).
|
|
where(
|
|
Arel::Nodes::Between.new(
|
|
cte_table[:row_id],
|
|
Arel::Nodes::And.new(
|
|
[(cte_table[:ct] / Arel.sql('2.0')),
|
|
(cte_table[:ct] / Arel.sql('2.0') + 1)]
|
|
)
|
|
)
|
|
).
|
|
with(query_so_far, cte).
|
|
to_sql
|
|
end
|
|
|
|
private
|
|
|
|
def average(args, as)
|
|
Arel::Nodes::NamedFunction.new("AVG", args, as)
|
|
end
|
|
|
|
def extract_epoch(arel_attribute)
|
|
Arel.sql(%Q{EXTRACT(EPOCH FROM "#{arel_attribute.relation.name}"."#{arel_attribute.name}")})
|
|
end
|
|
|
|
# Need to cast '0' to an INTERVAL before we can check if the interval is positive
|
|
def zero_interval
|
|
Arel::Nodes::NamedFunction.new("CAST", [Arel.sql("'0' AS INTERVAL")])
|
|
end
|
|
end
|
|
end
|
|
end
|