debian-mirror-gitlab/lib/gitlab/database/postgres_hll/batch_distinct_counter.rb
2021-02-22 17:27:13 +05:30

159 lines
6.8 KiB
Ruby

# frozen_string_literal: true
module Gitlab
module Database
module PostgresHll
# For large tables, PostgreSQL can take a long time to count rows due to MVCC.
# Implements a distinct batch counter based on HyperLogLog algorithm
# Needs indexes on the column below to calculate max, min and range queries
# For larger tables just set higher batch_size with index optimization
#
# In order to not use a possible complex time consuming query when calculating min and max values,
# the start and finish can be sent specifically, start and finish should contain max and min values for PRIMARY KEY of
# relation (most cases `id` column) rather than counted attribute eg:
# estimate_distinct_count(start: ::Project.with_active_services.minimum(:id), finish: ::Project.with_active_services.maximum(:id))
#
# Grouped relations are NOT supported yet.
#
# @example Usage
# ::Gitlab::Database::PostgresHllBatchDistinctCount.new(::Project, :creator_id).estimate_distinct_count
# ::Gitlab::Database::PostgresHllBatchDistinctCount.new(::Project.with_active_services.service_desk_enabled.where(time_period))
# .estimate_distinct_count(
# batch_size: 1_000,
# start: ::Project.with_active_services.service_desk_enabled.where(time_period).minimum(:id),
# finish: ::Project.with_active_services.service_desk_enabled.where(time_period).maximum(:id)
# )
#
# @note HyperLogLog is an PROBABILISTIC algorithm that ESTIMATES distinct count of given attribute value for supplied relation
# Like all probabilistic algorithm is has ERROR RATE margin, that can affect values,
# for given implementation no higher value was reported (https://gitlab.com/gitlab-org/gitlab/-/merge_requests/45673#accuracy-estimation) than 5.3%
# for the most of a cases this value is lower. However, if the exact value is necessary other tools has to be used.
class BatchDistinctCounter
ERROR_RATE = 4.9 # max encountered empirical error rate, used in tests
FALLBACK = -1
MIN_REQUIRED_BATCH_SIZE = 750
SLEEP_TIME_IN_SECONDS = 0.01 # 10 msec sleep
MAX_DATA_VOLUME = 4_000_000_000
# Each query should take < 500ms https://gitlab.com/gitlab-org/gitlab/-/merge_requests/22705
DEFAULT_BATCH_SIZE = 10_000
BIT_31_MASK = "B'0#{'1' * 31}'"
BIT_9_MASK = "B'#{'0' * 23}#{'1' * 9}'"
# @example source_query
# SELECT CAST(('X' || md5(CAST(%{column} as text))) as bit(32)) attr_hash_32_bits
# FROM %{relation}
# WHERE %{pkey} >= %{batch_start}
# AND %{pkey} < %{batch_end}
# AND %{column} IS NOT NULL
BUCKETED_DATA_SQL = <<~SQL
WITH hashed_attributes AS (%{source_query})
SELECT (attr_hash_32_bits & #{BIT_9_MASK})::int AS bucket_num,
(31 - floor(log(2, min((attr_hash_32_bits & #{BIT_31_MASK})::int))))::int as bucket_hash
FROM hashed_attributes
GROUP BY 1
SQL
TOTAL_BUCKETS_NUMBER = 512
def initialize(relation, column = nil)
@relation = relation
@column = column || relation.primary_key
end
def unwanted_configuration?(finish, batch_size, start)
batch_size <= MIN_REQUIRED_BATCH_SIZE ||
(finish - start) >= MAX_DATA_VOLUME ||
start > finish
end
def estimate_distinct_count(batch_size: nil, start: nil, finish: nil)
raise 'BatchCount can not be run inside a transaction' if ActiveRecord::Base.connection.transaction_open?
batch_size ||= DEFAULT_BATCH_SIZE
start = actual_start(start)
finish = actual_finish(finish)
raise "Batch counting expects positive values only for #{@column}" if start < 0 || finish < 0
return FALLBACK if unwanted_configuration?(finish, batch_size, start)
batch_start = start
hll_blob = {}
while batch_start <= finish
begin
hll_blob.merge!(hll_blob_for_batch(batch_start, batch_start + batch_size)) {|_key, old, new| new > old ? new : old }
batch_start += batch_size
end
sleep(SLEEP_TIME_IN_SECONDS)
end
estimate_cardinality(hll_blob)
end
private
# arbitrary values that are present in #estimate_cardinality
# are sourced from https://www.sisense.com/blog/hyperloglog-in-pure-sql/
# article, they are not representing any entity and serves as tune value
# for the whole equation
def estimate_cardinality(hll_blob)
num_zero_buckets = TOTAL_BUCKETS_NUMBER - hll_blob.size
num_uniques = (
((TOTAL_BUCKETS_NUMBER**2) * (0.7213 / (1 + 1.079 / TOTAL_BUCKETS_NUMBER))) /
(num_zero_buckets + hll_blob.values.sum { |bucket_hash| 2**(-1 * bucket_hash)} )
).to_i
if num_zero_buckets > 0 && num_uniques < 2.5 * TOTAL_BUCKETS_NUMBER
((0.7213 / (1 + 1.079 / TOTAL_BUCKETS_NUMBER)) * (TOTAL_BUCKETS_NUMBER *
Math.log2(TOTAL_BUCKETS_NUMBER.to_f / num_zero_buckets)))
else
num_uniques
end
end
def hll_blob_for_batch(start, finish)
@relation
.connection
.execute(BUCKETED_DATA_SQL % { source_query: source_query(start, finish) })
.map(&:values)
.to_h
end
# Generate the source query SQL snippet for the provided id range
#
# @example SQL query template
# SELECT CAST(('X' || md5(CAST(%{column} as text))) as bit(32)) attr_hash_32_bits
# FROM %{relation}
# WHERE %{pkey} >= %{batch_start} AND %{pkey} < %{batch_end}
# AND %{column} IS NOT NULL
#
# @param start initial id range
# @param finish final id range
# @return [String] SQL query fragment
def source_query(start, finish)
col_as_arel = @column.is_a?(Arel::Attributes::Attribute) ? @column : Arel.sql(@column.to_s)
col_as_text = Arel::Nodes::NamedFunction.new('CAST', [col_as_arel.as('text')])
md5_of_col = Arel::Nodes::NamedFunction.new('md5', [col_as_text])
md5_as_hex = Arel::Nodes::Concat.new(Arel.sql("'X'"), md5_of_col)
bits = Arel::Nodes::NamedFunction.new('CAST', [md5_as_hex.as('bit(32)')])
@relation
.where(@relation.primary_key => (start...finish))
.where(col_as_arel.not_eq(nil))
.select(bits.as('attr_hash_32_bits')).to_sql
end
def actual_start(start)
start || @relation.unscope(:group, :having).minimum(@relation.primary_key) || 0
end
def actual_finish(finish)
finish || @relation.unscope(:group, :having).maximum(@relation.primary_key) || 0
end
end
end
end
end