debian-mirror-gitlab/doc/administration/geo/setup/database.md
2021-02-22 17:27:13 +05:30

558 lines
22 KiB
Markdown

---
stage: Enablement
group: Geo
info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
type: howto
---
# Geo database replication **(PREMIUM ONLY)**
NOTE:
If your GitLab installation uses external (not managed by Omnibus) PostgreSQL
instances, the Omnibus roles will not be able to perform all necessary
configuration steps. In this case,
[follow the Geo with external PostgreSQL instances document instead](external_database.md).
NOTE:
The stages of the setup process must be completed in the documented order.
Before attempting the steps in this stage, [complete all prior stages](../setup/index.md#using-omnibus-gitlab).
This document describes the minimal steps you have to take to replicate your
**primary** GitLab database to a **secondary** node's database. You may have to
change some values, based on attributes including your database's setup and
size.
You are encouraged to first read through all the steps before executing them
in your testing/production environment.
## PostgreSQL replication
The GitLab **primary** node where the write operations happen will connect to
the **primary** database server, and **secondary** nodes will
connect to their own database servers (which are also read-only).
We recommend using [PostgreSQL replication slots](https://medium.com/@tk512/replication-slots-in-postgresql-b4b03d277c75)
to ensure that the **primary** node retains all the data necessary for the **secondary** nodes to
recover. See below for more details.
The following guide assumes that:
- You are using Omnibus and therefore you are using PostgreSQL 11 or later
which includes the [`pg_basebackup` tool](https://www.postgresql.org/docs/11/app-pgbasebackup.html).
- You have a **primary** node already set up (the GitLab server you are
replicating from), running Omnibus' PostgreSQL (or equivalent version), and
you have a new **secondary** server set up with the same versions of the OS,
PostgreSQL, and GitLab on all nodes.
WARNING:
Geo works with streaming replication. Logical replication is not supported at this time.
There is an [issue where support is being discussed](https://gitlab.com/gitlab-org/gitlab/-/issues/7420).
### Step 1. Configure the **primary** server
1. SSH into your GitLab **primary** server and login as root:
```shell
sudo -i
```
1. Edit `/etc/gitlab/gitlab.rb` and add a **unique** name for your node:
```ruby
# The unique identifier for the Geo node.
gitlab_rails['geo_node_name'] = '<node_name_here>'
```
1. Reconfigure the **primary** node for the change to take effect:
```shell
gitlab-ctl reconfigure
```
1. Execute the command below to define the node as **primary** node:
```shell
gitlab-ctl set-geo-primary-node
```
This command will use your defined `external_url` in `/etc/gitlab/gitlab.rb`.
1. GitLab 10.4 and up only: Do the following to make sure the `gitlab` database user has a password defined:
NOTE:
Until FDW settings are removed in GitLab version 14.0, avoid using single or double quotes in the
password for PostgreSQL as that will lead to errors when reconfiguring.
Generate a MD5 hash of the desired password:
```shell
gitlab-ctl pg-password-md5 gitlab
# Enter password: <your_password_here>
# Confirm password: <your_password_here>
# fca0b89a972d69f00eb3ec98a5838484
```
Edit `/etc/gitlab/gitlab.rb`:
```ruby
# Fill with the hash generated by `gitlab-ctl pg-password-md5 gitlab`
postgresql['sql_user_password'] = '<md5_hash_of_your_password>'
# Every node that runs Puma or Sidekiq needs to have the database
# password specified as below. If you have a high-availability setup, this
# must be present in all application nodes.
gitlab_rails['db_password'] = '<your_password_here>'
```
1. Omnibus GitLab already has a [replication user](https://wiki.postgresql.org/wiki/Streaming_Replication)
called `gitlab_replicator`. You must set the password for this user manually.
You will be prompted to enter a password:
```shell
gitlab-ctl set-replication-password
```
This command will also read the `postgresql['sql_replication_user']` Omnibus
setting in case you have changed `gitlab_replicator` username to something
else.
If you are using an external database not managed by Omnibus GitLab, you need
to create the replicator user and define a password to it manually:
```sql
--- Create a new user 'replicator'
CREATE USER gitlab_replicator;
--- Set/change a password and grants replication privilege
ALTER USER gitlab_replicator WITH REPLICATION ENCRYPTED PASSWORD '<replication_password>';
```
1. Configure PostgreSQL to listen on network interfaces:
For security reasons, PostgreSQL does not listen on any network interfaces
by default. However, Geo requires the **secondary** node to be able to
connect to the **primary** node's database. For this reason, we need the address of
each node.
NOTE:
For external PostgreSQL instances, see [additional instructions](external_database.md).
If you are using a cloud provider, you can lookup the addresses for each
Geo node through your cloud provider's management console.
To lookup the address of a Geo node, SSH in to the Geo node and execute:
```shell
##
## Private address
##
ip route get 255.255.255.255 | awk '{print "Private address:", $NF; exit}'
##
## Public address
##
echo "External address: $(curl --silent "ipinfo.io/ip")"
```
In most cases, the following addresses will be used to configure GitLab
Geo:
| Configuration | Address |
|:----------------------------------------|:------------------------------------------------------|
| `postgresql['listen_address']` | **Primary** node's public or VPC private address. |
| `postgresql['md5_auth_cidr_addresses']` | **Secondary** node's public or VPC private addresses. |
If you are using Google Cloud Platform, SoftLayer, or any other vendor that
provides a virtual private cloud (VPC) you can use the **primary** and **secondary** nodes
private addresses (corresponds to "internal address" for Google Cloud Platform) for
`postgresql['md5_auth_cidr_addresses']` and `postgresql['listen_address']`.
The `listen_address` option opens PostgreSQL up to network connections with the interface
corresponding to the given address. See [the PostgreSQL documentation](https://www.postgresql.org/docs/11/runtime-config-connection.html)
for more details.
NOTE:
If you need to use `0.0.0.0` or `*` as the listen_address, you will also need to add
`127.0.0.1/32` to the `postgresql['md5_auth_cidr_addresses']` setting, to allow Rails to connect through
`127.0.0.1`. For more information, see [omnibus-5258](https://gitlab.com/gitlab-org/omnibus-gitlab/-/issues/5258).
Depending on your network configuration, the suggested addresses may not
be correct. If your **primary** node and **secondary** nodes connect over a local
area network, or a virtual network connecting availability zones like
[Amazon's VPC](https://aws.amazon.com/vpc/) or [Google's VPC](https://cloud.google.com/vpc/)
you should use the **secondary** node's private address for `postgresql['md5_auth_cidr_addresses']`.
Edit `/etc/gitlab/gitlab.rb` and add the following, replacing the IP
addresses with addresses appropriate to your network configuration:
```ruby
##
## Geo Primary role
## - configure dependent flags automatically to enable Geo
##
roles ['geo_primary_role']
##
## Primary address
## - replace '<primary_node_ip>' with the public or VPC address of your Geo primary node
##
postgresql['listen_address'] = '<primary_node_ip>'
##
# Allow PostgreSQL client authentication from the primary and secondary IPs. These IPs may be
# public or VPC addresses in CIDR format, for example ['198.51.100.1/32', '198.51.100.2/32']
##
postgresql['md5_auth_cidr_addresses'] = ['<primary_node_ip>/32', '<secondary_node_ip>/32']
##
## Replication settings
## - set this to be the number of Geo secondary nodes you have
##
postgresql['max_replication_slots'] = 1
# postgresql['max_wal_senders'] = 10
# postgresql['wal_keep_segments'] = 10
##
## Disable automatic database migrations temporarily
## (until PostgreSQL is restarted and listening on the private address).
##
gitlab_rails['auto_migrate'] = false
```
1. Optional: If you want to add another **secondary** node, the relevant setting would look like:
```ruby
postgresql['md5_auth_cidr_addresses'] = ['<primary_node_ip>/32', '<secondary_node_ip>/32', '<another_secondary_node_ip>/32']
```
You may also want to edit the `wal_keep_segments` and `max_wal_senders` to match your
database replication requirements. Consult the [PostgreSQL - Replication documentation](https://www.postgresql.org/docs/11/runtime-config-replication.html)
for more information.
1. Save the file and reconfigure GitLab for the database listen changes and
the replication slot changes to be applied:
```shell
gitlab-ctl reconfigure
```
Restart PostgreSQL for its changes to take effect:
```shell
gitlab-ctl restart postgresql
```
1. Re-enable migrations now that PostgreSQL is restarted and listening on the
private address.
Edit `/etc/gitlab/gitlab.rb` and **change** the configuration to `true`:
```ruby
gitlab_rails['auto_migrate'] = true
```
Save the file and reconfigure GitLab:
```shell
gitlab-ctl reconfigure
```
1. Now that the PostgreSQL server is set up to accept remote connections, run
`netstat -plnt | grep 5432` to make sure that PostgreSQL is listening on port
`5432` to the **primary** server's private address.
1. A certificate was automatically generated when GitLab was reconfigured. This
will be used automatically to protect your PostgreSQL traffic from
eavesdroppers, but to protect against active ("man-in-the-middle") attackers,
the **secondary** node needs a copy of the certificate. Make a copy of the PostgreSQL
`server.crt` file on the **primary** node by running this command:
```shell
cat ~gitlab-psql/data/server.crt
```
Copy the output into a clipboard or into a local file. You
will need it when setting up the **secondary** node! The certificate is not sensitive
data.
### Step 2. Configure the **secondary** server
1. SSH into your GitLab **secondary** server and login as root:
```shell
sudo -i
```
1. Stop application server and Sidekiq
```shell
gitlab-ctl stop puma
gitlab-ctl stop sidekiq
```
NOTE:
This step is important so we don't try to execute anything before the node is fully configured.
1. [Check TCP connectivity](../../raketasks/maintenance.md) to the **primary** node's PostgreSQL server:
```shell
gitlab-rake gitlab:tcp_check[<primary_node_ip>,5432]
```
NOTE:
If this step fails, you may be using the wrong IP address, or a firewall may
be preventing access to the server. Check the IP address, paying close
attention to the difference between public and private addresses and ensure
that, if a firewall is present, the **secondary** node is permitted to connect to the
**primary** node on port 5432.
1. Create a file `server.crt` in the **secondary** server, with the content you got on the last step of the **primary** node's setup:
```shell
editor server.crt
```
1. Set up PostgreSQL TLS verification on the **secondary** node:
Install the `server.crt` file:
```shell
install \
-D \
-o gitlab-psql \
-g gitlab-psql \
-m 0400 \
-T server.crt ~gitlab-psql/.postgresql/root.crt
```
PostgreSQL will now only recognize that exact certificate when verifying TLS
connections. The certificate can only be replicated by someone with access
to the private key, which is **only** present on the **primary** node.
1. Test that the `gitlab-psql` user can connect to the **primary** node's database
(the default Omnibus database name is `gitlabhq_production`):
```shell
sudo \
-u gitlab-psql /opt/gitlab/embedded/bin/psql \
--list \
-U gitlab_replicator \
-d "dbname=gitlabhq_production sslmode=verify-ca" \
-W \
-h <primary_node_ip>
```
When prompted enter the password you set in the first step for the
`gitlab_replicator` user. If all worked correctly, you should see
the list of **primary** node's databases.
A failure to connect here indicates that the TLS configuration is incorrect.
Ensure that the contents of `~gitlab-psql/data/server.crt` on the **primary** node
match the contents of `~gitlab-psql/.postgresql/root.crt` on the **secondary** node.
1. Configure PostgreSQL:
This step is similar to how we configured the **primary** instance.
We need to enable this, even if using a single node.
Edit `/etc/gitlab/gitlab.rb` and add the following, replacing the IP
addresses with addresses appropriate to your network configuration:
```ruby
##
## Geo Secondary role
## - configure dependent flags automatically to enable Geo
##
roles ['geo_secondary_role']
##
## Secondary address
## - replace '<secondary_node_ip>' with the public or VPC address of your Geo secondary node
##
postgresql['listen_address'] = '<secondary_node_ip>'
postgresql['md5_auth_cidr_addresses'] = ['<secondary_node_ip>/32']
##
## Database credentials password (defined previously in primary node)
## - replicate same values here as defined in primary node
##
postgresql['sql_user_password'] = '<md5_hash_of_your_password>'
gitlab_rails['db_password'] = '<your_password_here>'
```
For external PostgreSQL instances, see [additional instructions](external_database.md).
If you bring a former **primary** node back online to serve as a **secondary** node, then you also need to remove `roles ['geo_primary_role']` or `geo_primary_role['enable'] = true`.
1. Reconfigure GitLab for the changes to take effect:
```shell
gitlab-ctl reconfigure
```
1. Restart PostgreSQL for the IP change to take effect:
```shell
gitlab-ctl restart postgresql
```
### Step 3. Initiate the replication process
Below we provide a script that connects the database on the **secondary** node to
the database on the **primary** node, replicates the database, and creates the
needed files for streaming replication.
The directories used are the defaults that are set up in Omnibus. If you have
changed any defaults, configure it as you see fit replacing the directories and paths.
WARNING:
Make sure to run this on the **secondary** server as it removes all PostgreSQL's
data before running `pg_basebackup`.
1. SSH into your GitLab **secondary** server and login as root:
```shell
sudo -i
```
1. Choose a database-friendly name to use for your **secondary** node to
use as the replication slot name. For example, if your domain is
`secondary.geo.example.com`, you may use `secondary_example` as the slot
name as shown in the commands below.
1. Execute the command below to start a backup/restore and begin the replication
WARNING:
Each Geo **secondary** node must have its own unique replication slot name.
Using the same slot name between two secondaries will break PostgreSQL replication.
```shell
gitlab-ctl replicate-geo-database \
--slot-name=<secondary_node_name> \
--host=<primary_node_ip>
```
NOTE:
Replication slot names must only contain lowercase letters, numbers, and the underscore character.
When prompted, enter the _plaintext_ password you set up for the `gitlab_replicator`
user in the first step.
This command also takes a number of additional options. You can use `--help`
to list them all, but here are a couple of tips:
- If PostgreSQL is listening on a non-standard port, add `--port=` as well.
- If your database is too large to be transferred in 30 minutes, you will need
to increase the timeout, e.g., `--backup-timeout=3600` if you expect the
initial replication to take under an hour.
- Pass `--sslmode=disable` to skip PostgreSQL TLS authentication altogether
(e.g., you know the network path is secure, or you are using a site-to-site
VPN). This is **not** safe over the public Internet!
- You can read more details about each `sslmode` in the
[PostgreSQL documentation](https://www.postgresql.org/docs/11/libpq-ssl.html#LIBPQ-SSL-PROTECTION);
the instructions above are carefully written to ensure protection against
both passive eavesdroppers and active "man-in-the-middle" attackers.
- Change the `--slot-name` to the name of the replication slot
to be used on the **primary** database. The script will attempt to create the
replication slot automatically if it does not exist.
- If you're repurposing an old server into a Geo **secondary** node, you'll need to
add `--force` to the command line.
- When not in a production machine you can disable backup step if you
really sure this is what you want by adding `--skip-backup`
The replication process is now complete.
## PgBouncer support (optional)
[PgBouncer](https://www.pgbouncer.org/) may be used with GitLab Geo to pool
PostgreSQL connections. We recommend using PgBouncer if you use GitLab in a
high-availability configuration with a cluster of nodes supporting a Geo
**primary** node and another cluster of nodes supporting a Geo **secondary** node. For more
information, see [High Availability with Omnibus GitLab](../../postgresql/replication_and_failover.md).
## Patroni support
Support for Patroni is intended to replace `repmgr` as a
[highly availabile PostgreSQL solution](../../postgresql/replication_and_failover.md)
on the primary node, but it can also be used for PostgreSQL HA on a secondary
node.
Starting with GitLab 13.5, Patroni is available for _experimental_ use with Geo
primary and secondary nodes. Due to its experimental nature, Patroni support is
subject to change without notice.
This experimental implementation has the following limitations:
- Whenever a new Leader is elected, the PgBouncer instance must be reconfigured
to point to the new Leader.
- Whenever a new Leader is elected on the primary node, the Standby Leader on
the secondary needs to be reconfigured to point to the new Leader.
- Whenever `gitlab-ctl reconfigure` runs on a Patroni Leader instance, there's a
chance the node will be demoted due to the required short-time restart. To
avoid this, you can pause auto-failover by running `gitlab-ctl patroni pause`.
After a reconfigure, it unpauses on its own.
For instructions about how to set up Patroni on the primary node, see the
[PostgreSQL replication and failover with Omnibus GitLab](../../postgresql/replication_and_failover.md#patroni) page.
If you are currently using `repmgr` on your Geo primary, see [these instructions](#migrating-from-repmgr-to-patroni) for migrating from `repmgr` to Patroni.
A production-ready and secure setup requires at least three Patroni instances on
the primary, and a similar configuration on the secondary nodes. Be sure to use
password credentials and other database best practices.
Similar to `repmgr`, using Patroni on a secondary node is optional.
To set up database replication with Patroni on a secondary node, configure a
_permanent replication slot_ on the primary node's Patroni cluster, and ensure
password authentication is used.
On Patroni instances for the primary node, add the following to the
`/etc/gitlab/gitlab.rb` file:
```ruby
# You need one entry for each secondary, with a unique name following PostgreSQL slot_name constraints:
#
# Configuration syntax will be: 'unique_slotname' => { 'type' => 'physical' },
# We don't support setting a permanent replication slot for logical replication type
patroni['replication_slots'] = {
'geo_secondary' => { 'type' => 'physical' }
}
postgresql['md5_auth_cidr_addresses'] = [
'PATRONI_PRIMARY1_IP/32', 'PATRONI_PRIMARY2_IP/32', 'PATRONI_PRIMARY3_IP/32', 'PATRONI_PRIMARY_PGBOUNCER/32',
'PATRONI_SECONDARY1_IP/32', 'PATRONI_SECONDARY2_IP/32', 'PATRONI_SECONDARY3_IP/32' # we list all secondary instances as they can all become a Standby Leader
# any other instance that needs access to the database as per documentation
]
postgresql['pgbouncer_user_password'] = 'PGBOUNCER_PASSWORD_HASH'
postgresql['sql_replication_password'] = 'POSTGRESQL_REPLICATION_PASSWORD_HASH'
postgresql['sql_user_password'] = 'POSTGRESQL_PASSWORD_HASH'
```
On Patroni instances for the secondary node, add the following to the
`/etc/gitlab/gitlab.rb` file:
```ruby
postgresql['md5_auth_cidr_addresses'] = [
'PATRONI_SECONDARY1_IP/32', 'PATRONI_SECONDARY2_IP/32', 'PATRONI_SECONDARY3_IP/32', 'PATRONI_SECONDARY_PGBOUNCER/32',
# any other instance that needs access to the database as per documentation
]
patroni['enable'] = true
patroni['standby_cluster']['enable'] = true
patroni['standby_cluster']['host'] = 'PATRONI_PRIMARY_LEADER_IP' # this needs to be changed anytime the primary Leader changes
patroni['standby_cluster']['port'] = 5432
patroni['standby_cluster']['primary_slot_name'] = 'geo_secondary' # or the unique replication slot name you setup before
patroni['replication_password'] = 'PLAIN_TEXT_POSTGRESQL_REPLICATION_PASSWORD'
```
## Migrating from repmgr to Patroni
1. Before migrating, it is recommended that there is no replication lag between the primary and secondary sites and that replication is paused. In GitLab 13.2 and later, you can pause and resume replication with `gitlab-ctl geo-replication-pause` and `gitlab-ctl geo-replication-resume` on a Geo secondary database node.
1. Follow the [instructions to migrate repmgr to Patroni](../../postgresql/replication_and_failover.md#switching-from-repmgr-to-patroni). When configuring Patroni on each primary site database node, add `patroni['replicaton_slots'] = { '<slot_name>' => 'physical' }`
to `gitlab.rb` where `<slot_name>` is the name of the replication slot for your Geo secondary. This will ensure that Patroni recognizes the replication slot as permanent and will not drop it upon restarting.
1. If database replication to the secondary was paused before migration, resume replication once Patroni is confirmed working on the primary.
## Troubleshooting
Read the [troubleshooting document](../replication/troubleshooting.md).