# Auto DevOps > - [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/37115) in GitLab 10.0. > - Generally available on GitLab 11.0. Auto DevOps provides pre-defined CI/CD configuration allowing you to automatically detect, build, test, deploy, and monitor your applications. Leveraging CI/CD best practices and tools, Auto DevOps aims to simplify the setup and execution of a mature and modern software development lifecycle. ## Overview You can spend a lot of effort to set up the workflow and processes required to build, deploy, and monitor your project. It gets worse when your company has hundreds, if not thousands, of projects to maintain. With new projects constantly starting up, the entire software development process becomes impossibly complex to manage. Auto DevOps provides you a seamless software development process by automatically detecting all dependencies and language technologies required to test, build, package, deploy, and monitor every project with minimal configuration. Automation enables consistency across your projects, seamless management of processes, and faster creation of new projects: push your code, and GitLab does the rest, improving your productivity and efficiency. For an introduction to Auto DevOps, watch [AutoDevOps in GitLab 11.0](https://youtu.be/0Tc0YYBxqi4). For requirements, see [Requirements for Auto DevOps](requirements.md) for more information. ## Enabled by default > [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41729) in GitLab 11.3. Auto DevOps is enabled by default for all projects and attempts to run on all pipelines in each project. An instance administrator can enable or disable this default in the [Auto DevOps settings](../../user/admin_area/settings/continuous_integration.md#auto-devops-core-only). Auto DevOps automatically disables in individual projects on their first pipeline failure, if it has not been explicitly enabled for the project. Since [GitLab 12.7](https://gitlab.com/gitlab-org/gitlab/-/issues/26655), Auto DevOps runs on pipelines automatically only if a [`Dockerfile` or matching buildpack](stages.md#auto-build) exists. If a [CI/CD configuration file](../../ci/yaml/README.md) is present in the project, it will continue to be used, whether or not Auto DevOps is enabled. ## Quick start If you're using GitLab.com, see the [quick start guide](quick_start_guide.md) for setting up Auto DevOps with GitLab.com and a Kubernetes cluster on Google Kubernetes Engine (GKE). If you use a self-managed instance of GitLab, you must configure the [Google OAuth2 OmniAuth Provider](../../integration/google.md) before configuring a cluster on GKE. After configuring the provider, you can follow the steps in the [quick start guide](quick_start_guide.md) to get started. In [GitLab 13.0](https://gitlab.com/gitlab-org/gitlab/-/issues/208132) and later, it is possible to leverage Auto DevOps to deploy to [AWS ECS](requirements.md#auto-devops-requirements-for-amazon-ecs). ## Comparison to application platforms and PaaS Auto DevOps provides features often included in an application platform or a Platform as a Service (PaaS). It takes inspiration from the innovative work done by [Heroku](https://www.heroku.com/) and goes beyond it in multiple ways: - Auto DevOps works with any Kubernetes cluster; you're not limited to running on GitLab's infrastructure. (Note that many features also work without Kubernetes). - There is no additional cost (no markup on the infrastructure costs), and you can use a Kubernetes cluster you host or Containers as a Service on any public cloud (for example, [Google Kubernetes Engine](https://cloud.google.com/kubernetes-engine/)). - Auto DevOps has more features including security testing, performance testing, and code quality testing. - Auto DevOps offers an incremental graduation path. If you need advanced customizations, you can start modifying the templates without starting over on a completely different platform. Review the [customizing](customize.md) documentation for more information. ## Features Comprised of a set of [stages](stages.md), Auto DevOps brings these best practices to your project in a simple and automatic way: 1. [Auto Build](stages.md#auto-build) 1. [Auto Test](stages.md#auto-test) 1. [Auto Code Quality](stages.md#auto-code-quality-starter) **(STARTER)** 1. [Auto SAST (Static Application Security Testing)](stages.md#auto-sast-ultimate) **(ULTIMATE)** 1. [Auto Secret Detection](stages.md#auto-secret-detection-ultimate) **(ULTIMATE)** 1. [Auto Dependency Scanning](stages.md#auto-dependency-scanning-ultimate) **(ULTIMATE)** 1. [Auto License Compliance](stages.md#auto-license-compliance-ultimate) **(ULTIMATE)** 1. [Auto Container Scanning](stages.md#auto-container-scanning-ultimate) **(ULTIMATE)** 1. [Auto Review Apps](stages.md#auto-review-apps) 1. [Auto DAST (Dynamic Application Security Testing)](stages.md#auto-dast-ultimate) **(ULTIMATE)** 1. [Auto Deploy](stages.md#auto-deploy) 1. [Auto Browser Performance Testing](stages.md#auto-browser-performance-testing-premium) **(PREMIUM)** 1. [Auto Monitoring](stages.md#auto-monitoring) As Auto DevOps relies on many different components, you should have a basic knowledge of the following: - [Kubernetes](https://kubernetes.io/docs/home/) - [Helm](https://helm.sh/docs/) - [Docker](https://docs.docker.com) - [GitLab Runner](https://docs.gitlab.com/runner/) - [Prometheus](https://prometheus.io/docs/introduction/overview/) Auto DevOps provides great defaults for all the stages and makes use of [CI templates](https://gitlab.com/gitlab-org/gitlab/-/tree/master/lib/gitlab/ci/templates). You can, however, [customize](customize.md) almost everything to your needs, and [manage Auto DevOps with GitLab APIs](customize.md#extend-auto-devops-with-the-api). For an overview on the creation of Auto DevOps, read more [in this blog post](https://about.gitlab.com/blog/2017/06/29/whats-next-for-gitlab-ci/). NOTE: **Note:** Kubernetes clusters can [be used without](../../user/project/clusters/index.md) Auto DevOps. ## Kubernetes requirements See [Auto DevOps requirements for Kubernetes](requirements.md#auto-devops-requirements-for-kubernetes). ## Auto DevOps base domain The Auto DevOps base domain is required to use [Auto Review Apps](stages.md#auto-review-apps), [Auto Deploy](stages.md#auto-deploy), and [Auto Monitoring](stages.md#auto-monitoring). You can define the base domain in any of the following places: - either under the cluster's settings, whether for an instance, [projects](../../user/project/clusters/index.md#base-domain) or [groups](../../user/group/clusters/index.md#base-domain) - or at the project level as a variable: `KUBE_INGRESS_BASE_DOMAIN` - or at the group level as a variable: `KUBE_INGRESS_BASE_DOMAIN` - or as an instance-wide fallback in **Admin Area > Settings** under the **Continuous Integration and Delivery** section The base domain variable `KUBE_INGRESS_BASE_DOMAIN` follows the same order of precedence as other environment [variables](../../ci/variables/README.md#priority-of-environment-variables). If the CI/CD variable is not set and the cluster setting is left blank, the instance-wide **Auto DevOps domain** setting will be used if set. TIP: **Tip:** If you use the [GitLab managed app for Ingress](../../user/clusters/applications.md#ingress), the URL endpoint should be automatically configured for you. All you must do is use its value for the `KUBE_INGRESS_BASE_DOMAIN` variable. NOTE: **Note:** `AUTO_DEVOPS_DOMAIN` was [deprecated in GitLab 11.8](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/52363) and replaced with `KUBE_INGRESS_BASE_DOMAIN`, and removed in [GitLab 12.0](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/56959). Auto DevOps requires a wildcard DNS A record matching the base domain(s). For a base domain of `example.com`, you'd need a DNS entry like: ```plaintext *.example.com 3600 A 1.2.3.4 ``` In this case, the deployed applications are served from `example.com`, and `1.2.3.4` is the IP address of your load balancer; generally NGINX ([see requirements](#requirements)). Setting up the DNS record is beyond the scope of this document; check with your DNS provider for information. Alternatively, you can use free public services like [nip.io](https://nip.io) which provide automatic wildcard DNS without any configuration. For [nip.io](https://nip.io), set the Auto DevOps base domain to `1.2.3.4.nip.io`. After completing setup, all requests hit the load balancer, which routes requests to the Kubernetes pods running your application. ### AWS ECS See [Auto DevOps requirements for Amazon ECS](requirements.md#auto-devops-requirements-for-amazon-ecs). ## Enabling/Disabling Auto DevOps When first using Auto DevOps, review the [requirements](#requirements) to ensure all the necessary components to make full use of Auto DevOps are available. First-time users should follow the [quick start guide](quick_start_guide.md). GitLab.com users can enable or disable Auto DevOps only at the project level. Self-managed users can enable or disable Auto DevOps at the project, group, or instance level. ### At the project level If enabling, check that your project does not have a `.gitlab-ci.yml`, or if one exists, remove it. 1. Go to your project's **Settings > CI/CD > Auto DevOps**. 1. Select the **Default to Auto DevOps pipeline** checkbox to enable it. 1. (Optional, but recommended) When enabling, you can add in the [base domain](#auto-devops-base-domain) Auto DevOps uses to [deploy your application](stages.md#auto-deploy), and choose the [deployment strategy](#deployment-strategy). 1. Click **Save changes** for the changes to take effect. After enabling the feature, an Auto DevOps pipeline is triggered on the `master` branch. ### At the group level > [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/52447) in GitLab 11.10. Only administrators and group owners can enable or disable Auto DevOps at the group level. When enabling or disabling Auto DevOps at group level, group configuration is implicitly used for the subgroups and projects inside that group, unless Auto DevOps is specifically enabled or disabled on the subgroup or project. To enable or disable Auto DevOps at the group level: 1. Go to your group's **Settings > CI/CD > Auto DevOps** page. 1. Select the **Default to Auto DevOps pipeline** checkbox to enable it. 1. Click **Save changes** for the changes to take effect. ### At the instance level (Administrators only) Even when disabled at the instance level, group owners and project maintainers can still enable Auto DevOps at the group and project level, respectively. 1. Go to **Admin Area > Settings > Continuous Integration and Deployment**. 1. Select **Default to Auto DevOps pipeline for all projects** to enable it. 1. (Optional) You can set up the Auto DevOps [base domain](#auto-devops-base-domain), for Auto Deploy and Auto Review Apps to use. 1. Click **Save changes** for the changes to take effect. ### Deployment strategy > [Introduced](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/38542) in GitLab 11.0. You can change the deployment strategy used by Auto DevOps by going to your project's **Settings > CI/CD > Auto DevOps**. The following options are available: - **Continuous deployment to production**: Enables [Auto Deploy](stages.md#auto-deploy) with `master` branch directly deployed to production. - **Continuous deployment to production using timed incremental rollout**: Sets the [`INCREMENTAL_ROLLOUT_MODE`](customize.md#timed-incremental-rollout-to-production-premium) variable to `timed`. Production deployments execute with a 5 minute delay between each increment in rollout. - **Automatic deployment to staging, manual deployment to production**: Sets the [`STAGING_ENABLED`](customize.md#deploy-policy-for-staging-and-production-environments) and [`INCREMENTAL_ROLLOUT_MODE`](customize.md#incremental-rollout-to-production-premium) variables to `1` and `manual`. This means: - `master` branch is directly deployed to staging. - Manual actions are provided for incremental rollout to production. TIP: **Tip:** Use the [blue-green deployment](../../ci/environments/incremental_rollouts.md#blue-green-deployment) technique to minimize downtime and risk. ## Using multiple Kubernetes clusters When using Auto DevOps, you can deploy different environments to different Kubernetes clusters, due to the 1:1 connection [existing between them](../../user/project/clusters/index.md#multiple-kubernetes-clusters). The [Deploy Job template](https://gitlab.com/gitlab-org/gitlab/blob/master/lib/gitlab/ci/templates/Jobs/Deploy.gitlab-ci.yml) used by Auto DevOps currently defines 3 environment names: - `review/` (every environment starting with `review/`) - `staging` - `production` Those environments are tied to jobs using [Auto Deploy](stages.md#auto-deploy), so except for the environment scope, they must have a different deployment domain. You must define a separate `KUBE_INGRESS_BASE_DOMAIN` variable for each of the above [based on the environment](../../ci/variables/README.md#limit-the-environment-scopes-of-environment-variables). The following table is an example of how to configure the three different clusters: | Cluster name | Cluster environment scope | `KUBE_INGRESS_BASE_DOMAIN` variable value | Variable environment scope | Notes | |--------------|---------------------------|-------------------------------------------|----------------------------|---| | review | `review/*` | `review.example.com` | `review/*` | The review cluster which runs all [Review Apps](../../ci/review_apps/index.md). `*` is a wildcard, used by every environment name starting with `review/`. | | staging | `staging` | `staging.example.com` | `staging` | (Optional) The staging cluster which runs the deployments of the staging environments. You must [enable it first](customize.md#deploy-policy-for-staging-and-production-environments). | | production | `production` | `example.com` | `production` | The production cluster which runs the production environment deployments. You can use [incremental rollouts](customize.md#incremental-rollout-to-production-premium). | To add a different cluster for each environment: 1. Navigate to your project's **Operations > Kubernetes**. 1. Create the Kubernetes clusters with their respective environment scope, as described from the table above. 1. After creating the clusters, navigate to each cluster and install Ingress. Wait for the Ingress IP address to be assigned. 1. Make sure you've [configured your DNS](#auto-devops-base-domain) with the specified Auto DevOps domains. 1. Navigate to each cluster's page, through **Operations > Kubernetes**, and add the domain based on its Ingress IP address. After completing configuration, you can test your setup by creating a merge request and verifying your application is deployed as a Review App in the Kubernetes cluster with the `review/*` environment scope. Similarly, you can check the other environments. ## Limitations The following restrictions apply. ### Private registry support No documented way of using private container registry with Auto DevOps exists. We strongly advise using GitLab Container Registry with Auto DevOps to simplify configuration and prevent any unforeseen issues. ### Install applications behind a proxy GitLab's Helm integration does not support installing applications when behind a proxy. Users who want to do so must inject their proxy settings into the installation pods at runtime, such as by using a [`PodPreset`](https://kubernetes.io/docs/concepts/workloads/pods/podpreset/): ```yaml apiVersion: settings.k8s.io/v1alpha1 kind: PodPreset metadata: name: gitlab-managed-apps-default-proxy namespace: gitlab-managed-apps spec: env: - name: http_proxy value: "PUT_YOUR_HTTP_PROXY_HERE" - name: https_proxy value: "PUT_YOUR_HTTPS_PROXY_HERE" ``` ## Troubleshooting ### Unable to select a buildpack Auto Build and Auto Test may fail to detect your language or framework with the following error: ```plaintext Step 5/11 : RUN /bin/herokuish buildpack build ---> Running in eb468cd46085 -----> Unable to select a buildpack The command '/bin/sh -c /bin/herokuish buildpack build' returned a non-zero code: 1 ``` The following are possible reasons: - Your application may be missing the key files the buildpack is looking for. Ruby applications require a `Gemfile` to be properly detected, even though it's possible to write a Ruby app without a `Gemfile`. - No buildpack may exist for your application. Try specifying a [custom buildpack](customize.md#custom-buildpacks). ### Pipeline that extends Auto DevOps with only / except fails If your pipeline fails with the following message: ```plaintext Found errors in your .gitlab-ci.yml: jobs:test config key may not be used with `rules`: only ``` This error appears when the included job’s rules configuration has been overridden with the `only` or `except` syntax. To fix this issue, you must either: - Transition your `only/except` syntax to rules. - (Temporarily) Pin your templates to the [GitLab 12.10 based templates](https://gitlab.com/gitlab-org/auto-devops-v12-10). ### Failure to create a Kubernetes namespace Auto Deploy will fail if GitLab can't create a Kubernetes namespace and service account for your project. For help debugging this issue, see [Troubleshooting failed deployment jobs](../../user/project/clusters/index.md#troubleshooting). ### Detected an existing PostgreSQL database After upgrading to GitLab 13.0, you may encounter this message when deploying with Auto DevOps: ```plaintext Detected an existing PostgreSQL database installed on the deprecated channel 1, but the current channel is set to 2. The default channel changed to 2 in of GitLab 13.0. [...] ``` Auto DevOps, by default, installs an in-cluster PostgreSQL database alongside your application. The default installation method changed in GitLab 13.0, and upgrading existing databases requires user involvement. The two installation methods are: - **channel 1 (deprecated):** Pulls in the database as a dependency of the associated Helm chart. Only supports Kubernetes versions up to version 1.15. - **channel 2 (current):** Installs the database as an independent Helm chart. Required for using the in-cluster database feature with Kubernetes versions 1.16 and greater. If you receive this error, you can do one of the following actions: - You can *safely* ignore the warning and continue using the channel 1 PostgreSQL database by setting `AUTO_DEVOPS_POSTGRES_CHANNEL` to `1` and redeploying. - You can delete the channel 1 PostgreSQL database and install a fresh channel 2 database by setting `AUTO_DEVOPS_POSTGRES_DELETE_V1` to a non-empty value and redeploying. DANGER: **Danger:** Deleting the channel 1 PostgreSQL database permanently deletes the existing channel 1 database and all its data. See [Upgrading PostgreSQL](upgrading_postgresql.md) for more information on backing up and upgrading your database. - If you are not using the in-cluster database, you can set `POSTGRES_ENABLED` to `false` and re-deploy. This option is especially relevant to users of *custom charts without the in-chart PostgreSQL dependency*. Database auto-detection is based on the `postgresql.enabled` Helm value for your release. This value is set based on the `POSTGRES_ENABLED` CI variable and persisted by Helm, regardless of whether or not your chart uses the variable. DANGER: **Danger:** Setting `POSTGRES_ENABLED` to `false` permanently deletes any existing channel 1 database for your environment. ## Development guides [Development guide for Auto DevOps](../../development/auto_devops.md)