--- type: reference, dev stage: none group: Development info: "See the Technical Writers assigned to Development Guidelines: https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments-to-development-guidelines" --- # Secure Coding Guidelines This document contains descriptions and guidelines for addressing security vulnerabilities commonly identified in the GitLab codebase. They are intended to help developers identify potential security vulnerabilities early, with the goal of reducing the number of vulnerabilities released over time. **Contributing** If you would like to contribute to one of the existing documents, or add guidelines for a new vulnerability type, please open an MR! Please try to include links to examples of the vulnerability found, and link to any resources used in defined mitigations. If you have questions or when ready for a review, please ping `gitlab-com/gl-security/appsec`. ## Permissions ### Description Application permissions are used to determine who can access what and what actions they can perform. For more information about the permission model at GitLab, please see [the GitLab permissions guide](permissions.md) or the [EE docs on permissions](../../ee/user/permissions.md). ### Impact Improper permission handling can have significant impacts on the security of an application. Some situations may reveal [sensitive data](https://gitlab.com/gitlab-com/gl-infra/production/-/issues/477) or allow a malicious actor to perform [harmful actions](https://gitlab.com/gitlab-org/gitlab/-/issues/8180). The overall impact depends heavily on what resources can be accessed or modified improperly. A common vulnerability when permission checks are missing is called [IDOR](https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/04-Testing_for_Insecure_Direct_Object_References) for Insecure Direct Object References. ### When to Consider Each time you implement a new feature/endpoint, whether it is at UI, API or GraphQL level. ### Mitigations **Start by writing tests** around permissions: unit and feature specs should both include tests based around permissions - Fine-grained, nitty-gritty specs for permissions are good: it is ok to be verbose here - Make assertions based on the actors and objects involved: can a user or group or XYZ perform this action on this object? - Consider defining them upfront with stakeholders, particularly for the edge cases - Do not forget **abuse cases**: write specs that **make sure certain things can't happen** - A lot of specs are making sure things do happen and coverage percentage doesn't take into account permissions as same piece of code is used. - Make assertions that certain actors cannot perform actions - Naming convention to ease auditability: to be defined, for example, a subfolder containing those specific permission tests or a `#permissions` block Be careful to **also test [visibility levels](https://gitlab.com/gitlab-org/gitlab-foss/-/blob/master/doc/development/permissions.md#feature-specific-permissions)** and not only project access rights. Some example of well implemented access controls and tests: 1. [example1](https://dev.gitlab.org/gitlab/gitlab-ee/-/merge_requests/710/diffs?diff_id=13750#af40ef0eaae3c1e018809e1d88086e32bccaca40_43_43) 1. [example2](https://dev.gitlab.org/gitlab/gitlabhq/-/merge_requests/2511/diffs#ed3aaab1510f43b032ce345909a887e5b167e196_142_155) 1. [example3](https://dev.gitlab.org/gitlab/gitlabhq/-/merge_requests/3170/diffs?diff_id=17494) **NB:** any input from development team is welcome, for example, about Rubocop rules. ## Regular Expressions guidelines ### Anchors / Multi line Unlike other programming languages (for example, Perl or Python) Regular Expressions are matching multi-line by default in Ruby. Consider the following example in Python: ```python import re text = "foo\nbar" matches = re.findall("^bar$",text) print(matches) ``` The Python example will output an empty array (`[]`) as the matcher considers the whole string `foo\nbar` including the newline (`\n`). In contrast Ruby's Regular Expression engine acts differently: ```ruby text = "foo\nbar" p text.match /^bar$/ ``` The output of this example is `#`, as Ruby treats the input `text` line by line. In order to match the whole __string__ the Regex anchors `\A` and `\z` should be used. #### Impact This Ruby Regex specialty can have security impact, as often regular expressions are used for validations or to impose restrictions on user-input. #### Examples GitLab-specific examples can be found in the following [path traversal](https://gitlab.com/gitlab-org/gitlab/-/issues/36029#note_251262187) and [open redirect](https://gitlab.com/gitlab-org/gitlab/-/issues/33569) issues. Another example would be this fictional Ruby on Rails controller: ```ruby class PingController < ApplicationController def ping if params[:ip] =~ /^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$/ render :text => `ping -c 4 #{params[:ip]}` else render :text => "Invalid IP" end end end ``` Here `params[:ip]` should not contain anything else but numbers and dots. However this restriction can be easily bypassed as the Regex anchors `^` and `$` are being used. Ultimately this leads to a shell command injection in `ping -c 4 #{params[:ip]}` by using newlines in `params[:ip]`. #### Mitigation In most cases the anchors `\A` for beginning of text and `\z` for end of text should be used instead of `^` and `$`. ## Denial of Service (ReDoS) / Catastrophic Backtracking When a regular expression (regex) is used to search for a string and can't find a match, it may then backtrack to try other possibilities. For example when the regex `.*!$` matches the string `hello!`, the `.*` first matches the entire string but then the `!` from the regex is unable to match because the character has already been used. In that case, the Ruby regex engine _backtracks_ one character to allow the `!` to match. [ReDoS](https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS) is an attack in which the attacker knows or controls the regular expression used. The attacker may be able to enter user input that triggers this backtracking behavior in a way that increases execution time by several orders of magnitude. ### Impact The resource, for example Puma, or Sidekiq, can be made to hang as it takes a long time to evaluate the bad regex match. The evaluation time may require manual termination of the resource. ### Examples Here are some GitLab-specific examples. User inputs used to create regular expressions: - [User-controlled filename](https://gitlab.com/gitlab-org/gitlab/-/issues/257497) - [User-controlled domain name](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/25314) - [User-controlled email address](https://gitlab.com/gitlab-org/gitlab/-/merge_requests/25122#note_289087459) Hardcoded regular expressions with backtracking issues: - [Repository name validation](https://gitlab.com/gitlab-org/gitlab/-/issues/220019) - [Link validation](https://gitlab.com/gitlab-org/gitlab/-/issues/218753), and [a bypass](https://gitlab.com/gitlab-org/gitlab/-/issues/273771) - [Entity name validation](https://gitlab.com/gitlab-org/gitlab/-/issues/289934) - [Validating color codes](https://gitlab.com/gitlab-org/gitlab/commit/717824144f8181bef524592eab882dd7525a60ef) Consider the following example application, which defines a check using a regular expression. A user entering `user@aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa!.com` as the email on a form will hang the web server. ```ruby class Email < ApplicationRecord DOMAIN_MATCH = Regexp.new('([a-zA-Z0-9]+)+\.com') validates :domain_matches private def domain_matches errors.add(:email, 'does not match') if email =~ DOMAIN_MATCH end end ``` ### Mitigation #### Ruby GitLab has [`Gitlab::UntrustedRegexp`](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/untrusted_regexp.rb) which internally uses the [`re2`](https://github.com/google/re2/wiki/Syntax) library. `re2` does not support backtracking so we get constant execution time, and a smaller subset of available regex features. All user-provided regular expressions should use `Gitlab::UntrustedRegexp`. For other regular expressions, here are a few guidelines: - If there's a clean non-regex solution, such as `String#start_with?`, consider using it - Ruby supports some advanced regex features like [atomic groups](https://www.regular-expressions.info/atomic.html) and [possessive quantifiers](https://www.regular-expressions.info/possessive.html) that eliminate backtracking - Avoid nested quantifiers if possible (for example `(a+)+`) - Try to be as precise as possible in your regex and avoid the `.` if there's an alternative - For example, Use `_[^_]+_` instead of `_.*_` to match `_text here_` - If in doubt, don't hesitate to ping `@gitlab-com/gl-security/appsec` #### Go Go's [`regexp`](https://pkg.go.dev/regexp) package uses `re2` and isn't vulnerable to backtracking issues. ## Further Links - [Rubular](https://rubular.com/) is a nice online tool to fiddle with Ruby Regexps. - [Runaway Regular Expressions](https://www.regular-expressions.info/catastrophic.html) - [The impact of regular expression denial of service (ReDoS) in practice: an empirical study at the ecosystem scale](https://people.cs.vt.edu/~davisjam/downloads/publications/DavisCoghlanServantLee-EcosystemREDOS-ESECFSE18.pdf). This research paper discusses approaches to automatically detect ReDoS vulnerabilities. - [Freezing the web: A study of ReDoS vulnerabilities in JavaScript-based web servers](https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-staicu.pdf). Another research paper about detecting ReDoS vulnerabilities. ## Server Side Request Forgery (SSRF) ### Description A [Server-side Request Forgery (SSRF)](https://www.hackerone.com/blog-How-To-Server-Side-Request-Forgery-SSRF) is an attack in which an attacker is able coerce a application into making an outbound request to an unintended resource. This resource is usually internal. In GitLab, the connection most commonly uses HTTP, but an SSRF can be performed with any protocol, such as Redis or SSH. With an SSRF attack, the UI may or may not show the response. The latter is called a Blind SSRF. While the impact is reduced, it can still be useful for attackers, especially for mapping internal network services as part of recon. ### Impact The impact of an SSRF can vary, depending on what the application server can communicate with, how much the attacker can control of the payload, and if the response is returned back to the attacker. Examples of impact that have been reported to GitLab include: - Network mapping of internal services - This can help an attacker gather information about internal services that could be used in further attacks. [More details](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/51327). - Reading internal services, including cloud service metadata. - The latter can be a serious problem, because an attacker can obtain keys that allow control of the victim's cloud infrastructure. (This is also a good reason to give only necessary privileges to the token.). [More details](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/51490). - When combined with CRLF vulnerability, remote code execution. [More details](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/41293). ### When to Consider - When the application makes any outbound connection ### Mitigations In order to mitigate SSRF vulnerabilities, it is necessary to validate the destination of the outgoing request, especially if it includes user-supplied information. The preferred SSRF mitigations within GitLab are: 1. Only connect to known, trusted domains/IP addresses. 1. Use the [GitLab::HTTP](#gitlab-http-library) library 1. Implement [feature-specific mitigations](#feature-specific-mitigations) #### GitLab HTTP Library The [GitLab::HTTP](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/http.rb) wrapper library has grown to include mitigations for all of the GitLab-known SSRF vectors. It is also configured to respect the `Outbound requests` options that allow instance administrators to block all internal connections, or limit the networks to which connections can be made. In some cases, it has been possible to configure GitLab::HTTP as the HTTP connection library for 3rd-party gems. This is preferable over re-implementing the mitigations for a new feature. - [More details](https://dev.gitlab.org/gitlab/gitlabhq/-/merge_requests/2530/diffs) #### Feature-specific mitigations For situations in which an allowlist or GitLab:HTTP cannot be used, it will be necessary to implement mitigations directly in the feature. It is best to validate the destination IP addresses themselves, not just domain names, as DNS can be controlled by the attacker. Below are a list of mitigations that should be implemented. There are many tricks to bypass common SSRF validations. If feature-specific mitigations are necessary, they should be reviewed by the AppSec team, or a developer who has worked on SSRF mitigations previously. - Block connections to all localhost addresses - `127.0.0.1/8` (IPv4 - note the subnet mask) - `::1` (IPv6) - Block connections to networks with private addressing (RFC 1918) - `10.0.0.0/8` - `172.16.0.0/12` - `192.168.0.0/24` - Block connections to link-local addresses (RFC 3927) - `169.254.0.0/16` - In particular, for GCP: `metadata.google.internal` -> `169.254.169.254` - For HTTP connections: Disable redirects or validate the redirect destination - To mitigate DNS rebinding attacks, validate and use the first IP address received See [`url_blocker_spec.rb`](https://gitlab.com/gitlab-org/gitlab/-/blob/master/spec/lib/gitlab/url_blocker_spec.rb) for examples of SSRF payloads ## XSS guidelines ### Description Cross site scripting (XSS) is an issue where malicious JavaScript code gets injected into a trusted web application and executed in a client's browser. The input is intended to be data, but instead gets treated as code by the browser. XSS issues are commonly classified in three categories, by their delivery method: - [Persistent XSS](https://owasp.org/www-community/Types_of_Cross-Site_Scripting#stored-xss-aka-persistent-or-type-i) - [Reflected XSS](https://owasp.org/www-community/Types_of_Cross-Site_Scripting#reflected-xss-aka-non-persistent-or-type-ii) - [DOM XSS](https://owasp.org/www-community/Types_of_Cross-Site_Scripting#dom-based-xss-aka-type-0) ### Impact The injected client-side code is executed on the victim's browser in the context of their current session. This means the attacker could perform any same action the victim would normally be able to do through a browser. The attacker would also have the ability to: - [log victim keystrokes](https://youtu.be/2VFavqfDS6w?t=1367) - launch a network scan from the victim's browser - potentially [obtain the victim's session tokens](https://youtu.be/2VFavqfDS6w?t=739) - perform actions that lead to data loss/theft or account takeover Much of the impact is contingent upon the function of the application and the capabilities of the victim's session. For further impact possibilities, please check out [the beef project](https://beefproject.com/). For a demonstration of the impact on GitLab with a realistic attack scenario, see [this video on the GitLab Unfiltered channel](https://www.youtube.com/watch?v=t4PzHNycoKo) (internal, it requires being logged in with the GitLab Unfiltered account). ### When to consider? When user submitted data is included in responses to end users, which is just about anywhere. ### Mitigation In most situations, a two-step solution can be used: input validation and output encoding in the appropriate context. #### Input validation - [Input Validation](https://youtu.be/2VFavqfDS6w?t=7489) ##### Setting expectations For any and all input fields, ensure to define expectations on the type/format of input, the contents, [size limits](https://youtu.be/2VFavqfDS6w?t=7582), the context in which it will be output. It's important to work with both security and product teams to determine what is considered acceptable input. ##### Validate input - Treat all user input as untrusted. - Based on the expectations you [defined above](#setting-expectations): - Validate the [input size limits](https://youtu.be/2VFavqfDS6w?t=7582). - Validate the input using an [allowlist approach](https://youtu.be/2VFavqfDS6w?t=7816) to only allow characters through which you are expecting to receive for the field. - Input which fails validation should be **rejected**, and not sanitized. - When adding redirects or links to a user-controlled URL, ensure that the scheme is HTTP or HTTPS. Allowing other schemes like `javascript://` can lead to XSS and other security issues. Note that denylists should be avoided, as it is near impossible to block all [variations of XSS](https://owasp.org/www-community/xss-filter-evasion-cheatsheet). #### Output encoding Once you've [determined when and where](#setting-expectations) the user submitted data will be output, it's important to encode it based on the appropriate context. For example: - Content placed inside HTML elements need to be [HTML entity encoded](https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#rule-1---html-escape-before-inserting-untrusted-data-into-html-element-content). - Content placed into a JSON response needs to be [JSON encoded](https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#rule-31---html-escape-json-values-in-an-html-context-and-read-the-data-with-jsonparse). - Content placed inside [HTML URL GET parameters](https://youtu.be/2VFavqfDS6w?t=3494) need to be [URL-encoded](https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html#rule-5---url-escape-before-inserting-untrusted-data-into-html-url-parameter-values) - [Additional contexts may require context-specific encoding](https://youtu.be/2VFavqfDS6w?t=2341). ### Additional information #### XSS mitigation and prevention in Rails By default, Rails automatically escapes strings when they are inserted into HTML templates. Avoid the methods used to keep Rails from escaping strings, especially those related to user-controlled values. Specifically, the following options are dangerous because they mark strings as trusted and safe: | Method | Avoid these options | |----------------------|-------------------------------| | HAML templates | `html_safe`, `raw`, `!=` | | Embedded Ruby (ERB) | `html_safe`, `raw`, `<%== %>` | In case you want to sanitize user-controlled values against XSS vulnerabilities, you can use [`ActionView::Helpers::SanitizeHelper`](https://api.rubyonrails.org/classes/ActionView/Helpers/SanitizeHelper.html). Calling `link_to` and `redirect_to` with user-controlled parameters can also lead to cross-site scripting. Do also sanitize and validate URL schemes. References: - [XSS Defense in Rails](https://youtu.be/2VFavqfDS6w?t=2442) - [XSS Defense with HAML](https://youtu.be/2VFavqfDS6w?t=2796) - [Validating Untrusted URLs in Ruby](https://youtu.be/2VFavqfDS6w?t=3936) - [RoR Model Validators](https://youtu.be/2VFavqfDS6w?t=7636) #### XSS mitigation and prevention in JavaScript and Vue - When updating the content of an HTML element using JavaScript, mark user-controlled values as `textContent` or `nodeValue` instead of `innerHTML`. - Avoid using `v-html` with user-controlled data, use [`v-safe-html`](https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/directives-safe-html-directive--default) instead. - Render unsafe or unsanitized content using [`dompurify`](fe_guide/security.md#sanitize-html-output). - Consider using [`gl-sprintf`](../../ee/development/i18n/externalization.md#interpolation) to interpolate translated strings securely. - Avoid `__()` with translations that contain user-controlled values. - When working with `postMessage`, ensure the `origin` of the message is allowlisted. - Consider using the [Safe Link Directive](https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/directives-safe-link-directive--default) to generate secure hyperlinks by default. #### GitLab specific libraries for mitigating XSS ##### Vue - [isSafeURL](https://gitlab.com/gitlab-org/gitlab/-/blob/v12.7.5-ee/app/assets/javascripts/lib/utils/url_utility.js#L190-207) - [GlSprintf](https://gitlab-org.gitlab.io/gitlab-ui/?path=/story/utilities-sprintf--default) #### Content Security Policy - [Content Security Policy](https://www.youtube.com/watch?v=2VFavqfDS6w&t=12991s) - [Use nonce-based Content Security Policy for inline JavaScript](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/65330) #### Free form input field ### Select examples of past XSS issues affecting GitLab - [Stored XSS in user status](https://gitlab.com/gitlab-org/gitlab-foss/issues/55320) - [XSS vulnerability on custom project templates form](https://gitlab.com/gitlab-org/gitlab/-/issues/197302) - [Stored XSS in branch names](https://gitlab.com/gitlab-org/gitlab-foss/-/issues/55320) - [Stored XSS in merge request pages](https://gitlab.com/gitlab-org/gitlab/-/issues/35096) ### Internal Developer Training - [Introduction to XSS](https://www.youtube.com/watch?v=PXR8PTojHmc&t=7785s) - [Reflected XSS](https://youtu.be/2VFavqfDS6w?t=603s) - [Persistent XSS](https://youtu.be/2VFavqfDS6w?t=643) - [DOM XSS](https://youtu.be/2VFavqfDS6w?t=5871) - [XSS in depth](https://www.youtube.com/watch?v=2VFavqfDS6w&t=111s) - [XSS Defense](https://youtu.be/2VFavqfDS6w?t=1685) - [XSS Defense in Rails](https://youtu.be/2VFavqfDS6w?t=2442) - [XSS Defense with HAML](https://youtu.be/2VFavqfDS6w?t=2796) - [JavaScript URLs](https://youtu.be/2VFavqfDS6w?t=3274) - [URL encoding context](https://youtu.be/2VFavqfDS6w?t=3494) - [Validating Untrusted URLs in Ruby](https://youtu.be/2VFavqfDS6w?t=3936) - [HTML Sanitization](https://youtu.be/2VFavqfDS6w?t=5075) - [DOMPurify](https://youtu.be/2VFavqfDS6w?t=5381) - [Safe Client-side JSON Handling](https://youtu.be/2VFavqfDS6w?t=6334) - [iframe sandboxing](https://youtu.be/2VFavqfDS6w?t=7043) - [Input Validation](https://youtu.be/2VFavqfDS6w?t=7489) - [Validate size limits](https://youtu.be/2VFavqfDS6w?t=7582) - [RoR model validators](https://youtu.be/2VFavqfDS6w?t=7636) - [Allowlist input validation](https://youtu.be/2VFavqfDS6w?t=7816) - [Content Security Policy](https://www.youtube.com/watch?v=2VFavqfDS6w&t=12991s) ## Path Traversal guidelines ### Description Path Traversal vulnerabilities grant attackers access to arbitrary directories and files on the server that is executing an application, including data, code or credentials. ### Impact Path Traversal attacks can lead to multiple critical and high severity issues, like arbitrary file read, remote code execution or information disclosure. ### When to consider When working with user-controlled filenames/paths and file system APIs. ### Mitigation and prevention In order to prevent Path Traversal vulnerabilities, user-controlled filenames or paths should be validated before being processed. - Comparing user input against an allowlist of allowed values or verifying that it only contains allowed characters. - After validating the user supplied input, it should be appended to the base directory and the path should be canonicalized using the file system API. #### GitLab specific validations The methods `Gitlab::Utils.check_path_traversal!()` and `Gitlab::Utils.check_allowed_absolute_path!()` can be used to validate user-supplied paths and prevent vulnerabilities. `check_path_traversal!()` will detect their Path Traversal payloads and accepts URL-encoded paths. `check_allowed_absolute_path!()` will check if a path is absolute and whether it is inside the allowed path list. By default, absolute paths are not allowed, so you need to pass a list of allowed absolute paths to the `path_allowlist` parameter when using `check_allowed_absolute_path!()`. To use a combination of both checks, follow the example below: ```ruby path = Gitlab::Utils.check_path_traversal!(path) Gitlab::Utils.check_allowed_absolute_path!(path, path_allowlist) ``` In the REST API, we have the [`FilePath`](https://gitlab.com/gitlab-org/security/gitlab/-/blob/master/lib/api/validations/validators/file_path.rb) validator that can be used to perform the checking on any file path argument the endpoints have. It can be used as follows: ```ruby requires :file_path, type: String, file_path: { allowlist: ['/foo/bar/', '/home/foo/', '/app/home'] } ``` The Path Traversal check can also be used to forbid any absolute path: ```ruby requires :file_path, type: String, file_path: true ``` Absolute paths are not allowed by default. If allowing an absolute path is required, you need to provide an array of paths to the parameter `allowlist`. ## OS command injection guidelines Command injection is an issue in which an attacker is able to execute arbitrary commands on the host operating system through a vulnerable application. Such attacks don't always provide feedback to a user, but the attacker can use simple commands like `curl` to obtain an answer. ### Impact The impact of command injection greatly depends on the user context running the commands, as well as how data is validated and sanitized. It can vary from low impact because the user running the injected commands has limited rights, to critical impact if running as the root user. Potential impacts include: - Execution of arbitrary commands on the host machine. - Unauthorized access to sensitive data, including passwords and tokens in secrets or configuration files. - Exposure of sensitive system files on the host machine, such as `/etc/passwd/` or `/etc/shadow`. - Compromise of related systems and services gained through access to the host machine. You should be aware of and take steps to prevent command injection when working with user-controlled data that are used to run OS commands. ### Mitigation and prevention To prevent OS command injections, user-supplied data shouldn't be used within OS commands. In cases where you can't avoid this: - Validate user-supplied data against an allowlist. - Ensure that user-supplied data only contains alphanumeric characters (and no syntax or whitespace characters, for example). - Always use `--` to separate options from arguments. #### Ruby Consider using `system("command", "arg0", "arg1", ...)` whenever you can. This prevents an attacker from concatenating commands. For more examples on how to use shell commands securely, consult [Guidelines for shell commands in the GitLab codebase](shell_commands.md). It contains various examples on how to securely call OS commands. #### Go Go has built-in protections that usually prevent an attacker from successfully injecting OS commands. Consider the following example: ```golang package main import ( "fmt" "os/exec" ) func main() { cmd := exec.Command("echo", "1; cat /etc/passwd") out, _ := cmd.Output() fmt.Printf("%s", out) } ``` This echoes `"1; cat /etc/passwd"`. **Do not** use `sh`, as it bypasses internal protections: ```golang out, _ = exec.Command("sh", "-c", "echo 1 | cat /etc/passwd").Output() ``` This outputs `1` followed by the content of `/etc/passwd`. ## General recommendations ### TLS minimum recommended version As we have [moved away from supporting TLS 1.0 and 1.1](https://about.gitlab.com/blog/2018/10/15/gitlab-to-deprecate-older-tls/), you must use TLS 1.2 and above. #### Ciphers We recommend using the ciphers that Mozilla is providing in their [recommended SSL configuration generator](https://ssl-config.mozilla.org/#server=go&version=1.17&config=intermediate&guideline=5.6) for TLS 1.2: - `ECDHE-ECDSA-AES128-GCM-SHA256` - `ECDHE-RSA-AES128-GCM-SHA256` - `ECDHE-ECDSA-AES256-GCM-SHA384` - `ECDHE-RSA-AES256-GCM-SHA384` - `ECDHE-ECDSA-CHACHA20-POLY1305` - `ECDHE-RSA-CHACHA20-POLY1305` And the following cipher suites (according to the [RFC 8446](https://datatracker.ietf.org/doc/html/rfc8446#appendix-B.4)) for TLS 1.3: - `TLS_AES_128_GCM_SHA256` - `TLS_AES_256_GCM_SHA384` - `TLS_CHACHA20_POLY1305_SHA256` *Note*: **Golang** does [not support](https://github.com/golang/go/blob/go1.17/src/crypto/tls/cipher_suites.go#L676) all cipher suites with TLS 1.3. ##### Implementation examples ##### TLS 1.3 For TLS 1.3, **Golang** only supports [3 cipher suites](https://github.com/golang/go/blob/go1.17/src/crypto/tls/cipher_suites.go#L676), as such we only need to set the TLS version: ```golang cfg := &tls.Config{ MinVersion: tls.VersionTLS13, } ``` For **Ruby**, you can use [HTTParty](https://github.com/jnunemaker/httparty) and specify TLS 1.3 version as well as ciphers: Whenever possible this example should be **avoided** for security purposes: ```ruby response = HTTParty.get('https://gitlab.com', ssl_version: :TLSv1_3, ciphers: ['TLS_AES_128_GCM_SHA256', 'TLS_AES_256_GCM_SHA384', 'TLS_CHACHA20_POLY1305_SHA256']) ``` When using [`GitLab::HTTP`](#gitlab-http-library), the code looks like: This is the **recommended** implementation to avoid security issues such as SSRF: ```ruby response = GitLab::HTTP.perform_request(Net::HTTP::Get, 'https://gitlab.com', ssl_version: :TLSv1_3, ciphers: ['TLS_AES_128_GCM_SHA256', 'TLS_AES_256_GCM_SHA384', 'TLS_CHACHA20_POLY1305_SHA256']) ``` ##### TLS 1.2 **Golang** does support multiple cipher suites that we do not want to use with TLS 1.2. We need to explicitly list authorized ciphers: ```golang func secureCipherSuites() []uint16 { return []uint16{ tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256, tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384, tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305, tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305, } ``` And then use `secureCipherSuites()` in `tls.Config`: ```golang tls.Config{ (...), CipherSuites: secureCipherSuites(), MinVersion: tls.VersionTLS12, (...), } ``` This example was taken [here](https://gitlab.com/gitlab-org/cluster-integration/gitlab-agent/-/blob/871b52dc700f1a66f6644fbb1e78a6d463a6ff83/internal/tool/tlstool/tlstool.go#L72). For **Ruby**, you can use again [HTTParty](https://github.com/jnunemaker/httparty) and specify this time TLS 1.2 version alongside with the recommended ciphers: ```ruby response = GitLab::HTTP.perform_request(Net::HTTP::Get, 'https://gitlab.com', ssl_version: :TLSv1_2, ciphers: ['ECDHE-ECDSA-AES128-GCM-SHA256', 'ECDHE-RSA-AES128-GCM-SHA256', 'ECDHE-ECDSA-AES256-GCM-SHA384', 'ECDHE-RSA-AES256-GCM-SHA384', 'ECDHE-ECDSA-CHACHA20-POLY1305', 'ECDHE-RSA-CHACHA20-POLY1305']) ``` ## GitLab Internal Authorization ### Introduction There are some cases where `users` passed in the code is actually referring to a `DeployToken`/`DeployKey` entity instead of a real `User`, because of the code below in **`/lib/api/api_guard.rb`** ```ruby def find_user_from_sources strong_memoize(:find_user_from_sources) do deploy_token_from_request || find_user_from_bearer_token || find_user_from_job_token || user_from_warden end end ``` ### Past Vulnerable Code In some scenarios such as [this one](https://gitlab.com/gitlab-org/gitlab/-/issues/237795), user impersonation is possible because a `DeployToken` ID can be used in place of a `User` ID. This happened because there was no check on the line with `Gitlab::Auth::CurrentUserMode.bypass_session!(user.id)`. In this case, the `id` is actually a `DeployToken` ID instead of a `User` ID. ```ruby def find_current_user! user = find_user_from_sources return unless user # Sessions are enforced to be unavailable for API calls, so ignore them for admin mode Gitlab::Auth::CurrentUserMode.bypass_session!(user.id) if Gitlab::CurrentSettings.admin_mode unless api_access_allowed?(user) forbidden!(api_access_denied_message(user)) end ``` ### Best Practices In order to prevent this from happening, it is recommended to use the method `user.is_a?(User)` to make sure it returns `true` when we are expecting to deal with a `User` object. This could prevent the ID confusion from the method `find_user_from_sources` mentioned above. Below code snippet shows the fixed code after applying the best practice to the vulnerable code above. ```ruby def find_current_user! user = find_user_from_sources return unless user if user.is_a?(User) && Gitlab::CurrentSettings.admin_mode # Sessions are enforced to be unavailable for API calls, so ignore them for admin mode Gitlab::Auth::CurrentUserMode.bypass_session!(user.id) end unless api_access_allowed?(user) forbidden!(api_access_denied_message(user)) end ``` ## Guidelines when defining missing methods with metaprogramming Metaprogramming is a way to define methods **at runtime**, instead of at the time of writing and deploying the code. It is a powerful tool, but can be dangerous if we allow untrusted actors (like users) to define their own arbitrary methods. For example, imagine we accidentally let an attacker overwrite an access control method to always return true! It can lead to many classes of vulnerabilities such as access control bypass, information disclosure, arbitrary file reads, and remote code execution. Key methods to watch out for are `method_missing`, `define_method`, `delegate`, and similar methods. ### Insecure metaprogramming example This example is adapted from an example submitted by [@jobert](https://hackerone.com/jobert?type=user) through our HackerOne bug bounty program. Thank you for your contribution! Before Ruby 2.5.1, you could implement delegators using the `delegate` or `method_missing` methods. For example: ```ruby class User def initialize(attributes) @options = OpenStruct.new(attributes) end def is_admin? name.eql?("Sid") # Note - never do this! end def method_missing(method, *args) @options.send(method, *args) end end ``` When a method was called on a `User` instance that didn't exist, it passed it along to the `@options` instance variable. ```ruby User.new({name: "Jeeves"}).is_admin? # => false User.new(name: "Sid").is_admin? # => true User.new(name: "Jeeves", "is_admin?" => true).is_admin? # => false ``` Because the `is_admin?` method is already defined on the class, its behavior is not overridden when passing `is_admin?` to the initializer. This class can be refactored to use the `Forwardable` method and `def_delegators`: ```ruby class User extend Forwardable def initialize(attributes) @options = OpenStruct.new(attributes) self.class.instance_eval do def_delegators :@options, *attributes.keys end end def is_admin? name.eql?("Sid") # Note - never do this! end end ``` It might seem like this example has the same behavior as the first code example. However, there's one crucial difference: **because the delegators are meta-programmed after the class is loaded, it can overwrite existing methods**: ```ruby User.new({name: "Jeeves"}).is_admin? # => false User.new(name: "Sid").is_admin? # => true User.new(name: "Jeeves", "is_admin?" => true).is_admin? # => true # ^------------------ The method is overwritten! Sneaky Jeeves! ``` In the example above, the `is_admin?` method is overwritten when passing it to the initializer. ### Best practices - Never pass user-provided details into method-defining metaprogramming methods. - If you must, be **very** confident that you've sanitized the values correctly. Consider creating an allowlist of values, and validating the user input against that. - When extending classes that use metaprogramming, make sure you don't inadvertently override any method definition safety checks.