{ "cells": [ { "cell_type": "markdown", "id": "0aac5da7-745c-4eda-847a-3d0d07a1bb9b", "metadata": { "tags": [] }, "source": [ "# This is a markdown cell\n", "\n", "This paragraph has\n", "With\n", "Many\n", "Lines. How we will he handle MR notes?\n", "\n", "But I can add another paragraph" ] }, { "cell_type": "raw", "id": "faecea5b-de0a-49fa-9a3a-61c2add652da", "metadata": {}, "source": [ "This is a raw cell\n", "With\n", "Multiple lines" ] }, { "cell_type": "code", "execution_count": 1, "id": "893ca2c0-ab75-4276-9dad-be1c40e16e8a", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "id": "0d707fb5-226f-46d6-80bd-489ebfb8905c", "metadata": {}, "outputs": [], "source": [ "np.random.seed(42)" ] }, { "cell_type": "code", "execution_count": 3, "id": "35467fcf-28b1-4c7b-bb09-4cb192c35293", "metadata": { "tags": [ "senoid" ] }, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "some_invalid_base64_image_here\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "x = np.linspace(0, 4*np.pi,50)\n", "y = np.sin(x)\n", "\n", "plt.plot(x, y)" ] }, { "cell_type": "code", "execution_count": 4, "id": "dc1178cd-c46d-4da3-9ab5-08f000699884", "metadata": {}, "outputs": [], "source": [ "df = pd.DataFrame({\"x\": x, \"y\": y})" ] }, { "cell_type": "code", "execution_count": 5, "id": "6e749b4f-b409-4700-870f-f68c39462490", "metadata": { "tags": [ "some-table" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
xy
00.0000000.000000
10.2564570.253655
\n", "
" ], "text/plain": [ " x y\n", "0 0.000000 0.000000\n", "1 0.256457 0.253655" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[:2]" ] }, { "cell_type": "code", "execution_count": null, "id": "0ddef5ef-94a3-4afd-9c70-ddee9694f512", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" }, "toc-showtags": true }, "nbformat": 4, "nbformat_minor": 5 }