p GitLab

GIT CHEAT SHEET

1. GIT CONFIGURATION

$ git config --global user.name "Your Name"
Set the name that will be attached to your commits and tags.
$ git config --global user.email "you@example.com"
Set the e-mail address that will be attached to your commits and tags.
$ git config --global color.ui auto

Enable some colorization of Git output.

2. STARTING A PROJECT

$ git init [project name]

Create new local repository. If [project name] is provided, Git will create

a new directory named [project name] and will initialize a repository inside it.
If [project name] is not provided, then a new repository is initialized in current
directory.

$ git clone [project url]

Downloads a project with entire history from the remote repository.

B. IGNORING FILES

$ cat .gitignore
/logs/*
'logs/.gitkeep
/tmp

*.swp

Thanks to this file Git will ignore all files in logs directory (excluding
the .gitkeep file), whole tmp directory and all files *.swp. Described file
ignoring will work for the directory (and children directories) where .gitignore
file is placed.

GitLab - Everyone can contribute https:/about.gitlab.com/

3. DAY-TO-DAY WORK

$ git status

See the status of your work. New, staged, modified files. Current branch.
$ git diff [file]

Show changes between working directory and staging area.

$ git diff --staged [file]
Show changes between staging area and index (repository commited status).
$ git checkout -- [file]

Discard changes in working directory. This operation is unrecoverable.
$ git add [file]

Add a file to the staging area. Use . instead of full file path, to add all
changes files from current directory down into directory tree.

$ git reset [file]
Get file back from staging area to working directory.
$ git commit

Create new commit from changes added to the staging area. Commit must
have a message!
$ git rm [file]

Remove file from working directory and add deletion to staging area.
$ git stash

Put your current changes into stash.
$ git stash pop
Apply stored stash content into working directory, and clear stash.
$ git stash drop

Clear stash without applying it into working directory.

A. GIT INSTALLATION

For GNU/Linux distributions Git should be available in the standard
system repository. For example in Debian/Ubuntu please type in
the terminal:

$ sudo apt-get install git

If you want or need to install Git from source, you can get it from
https://git-scm.com/downloads.

An excellent Git course can be found in the great Pro Git book by
Scott Chacon and Ben Straub. The book is available online for free
at https://git-scm.com/book.

4. GIT BRANCHING MODEL

$ git branch [-a]
List all local branches in repository. With -a: show all branches (with remote).
$ git branch [name]

Create new branch, referencing the current HEAD.
$ git checkout [-b] [name]

Switch working directory to the specified branch. With -b: Git will create the
specified branch if it does not exist.

$ git merge [from name]

Join specified [from name] branch into your current branch (the one you are
on currenlty).

$ git branch -d [name]

Remove selected branch, if it is already merged into any other. -D instead of
-d forces deletion.




5. REVIEW YOUR WORK

GIT CHEAT SHEET

6. TAGGING KNOWN COMMITS

C. THE ZOO OF WORKING AREAS

$ git log [-n count]

List commit history of current branch. -n count limits list to last n commits.
$ git log --oneline --graph --decorate

An overview with references labels and history graph. One commit per line.
$ git log ref..

List commits that are present on current branch and not merged into ref.
Aref can be e.g. a branch name or a tag name.

$ git log ..ref
List commit, that are present on ref and not merged into current branch.
$ git reflog

List operations (like checkouts, commits etc.) made on local repository.

8. SYNCHRONIZING REPOSITORIES

$ git fetch [remote]
Fetch changes from the remote, but not update tracking branches.
$ git fetch --prune [remote]
Remove remote refs, that were removed from the remote repository.
$ git pull [remote]
Fetch changes from the remote and merge current branch with its upstream.
$ git push [--tags] [remote]
Push local changes to the remote. Use --tags to push tags.
$ git push -u [remote] [branch]

Push local branch to remote repository. Set its copy as an upstream.

$ git tag
List all tags.
$ git tag [name] [commit sha]

Create a tag reference named name for current commit. Add commit sha to
tag a specific commit instead of current one.

$ git tag -a [name] [commit sha]
Create a tag object named name for current commit.
$ git tag -d [name]

Remove a tag from a local repository.

7. REVERTING CHANGES

$ git reset [--hard] [target reference]

Switch current branch to the target reference, and leaves a difference as an
uncommited changes. When --hard is used, all changes are discarded.

$ git revert [commit sha]

Create a new commit, reverting changes from the specified commit. It
generates an inversion of changes.

Another remote repository.
Git is a distributed version conrol
system. You can have as many
remote repositories as you want.
Just remeber to update them

V2 frequently :)

Remote repository
named origin?
You've probably made
git clone from here.

remote repo

remote repo
(name: origin)

(name: public)

git push public master

or
git pull remote repositories

local repository
repOSIlOI'y \glt commit

i[ldex
git reset ? (3139Ing area)

Changes commited here A
will be safe.
If you are doing backups!
You are doing it, right!?

you don't want to include.

m git stash Only index will be
P i committed.
) a gita Choose wisely
Akind of a shelf qit slam—» worklng what to add!
for the mess "
directory

7
You do all the
hacking right here!

And this is the past. Here was chaos,
where no version control was used.
Don't live in chaos!
Use Git!

GitLabh - Everyone can contribute https:/about.gitlab.com/

(11113 an object

LIENTH Il a reference to a commit; can have a tracked upstream

a reference (standard) or an object (annotated)

tag
HEAD

a place where your working directory is now

This is a tag. It looks like a developer's __
note so it's probably a reference,
not an object.

O_

X This is an initial commit,
it has no parents

This is a normal cummit,/
it has one parent

D. COMMITS, BRANCHES AND TAGS

This is a local branch.
Itis 3 commits ahead, ~ax
you see it, right?

an

This is an upstream branch-” This is also

alocal branch

)
N\

Q

This is a merge commit, v
E it has two parents!

This is a tag. It looks like a 7

version so it's probably an object

(annotated tag)

> O

Your working directory -
is here



