New upstream version 12.2.8

This commit is contained in:
Sruthi Chandran 2019-10-16 22:29:52 +05:30
parent b022540ee0
commit 271c7a7671
39 changed files with 0 additions and 1731 deletions

View file

@ -1,65 +0,0 @@
*.gem
*.rbc
/.config
/coverage/
/InstalledFiles
/pkg/
/spec/reports/
/spec/examples.txt
/test/tmp/
/test/version_tmp/
/tmp/
# Used by dotenv library to load environment variables.
# .env
## Specific to RubyMotion:
.dat*
.repl_history
build/
*.bridgesupport
build-iPhoneOS/
build-iPhoneSimulator/
## Specific to RubyMotion (use of CocoaPods):
#
# We recommend against adding the Pods directory to your .gitignore. However
# you should judge for yourself, the pros and cons are mentioned at:
# https://guides.cocoapods.org/using/using-cocoapods.html#should-i-check-the-pods-directory-into-source-control
#
# vendor/Pods/
## Documentation cache and generated files:
/.yardoc/
/_yardoc/
/doc/
/rdoc/
## Environment normalization:
/.bundle/
/vendor/bundle
/lib/bundler/man/
# for a library or gem, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# Gemfile.lock
.ruby-version
.ruby-gemset
# unless supporting rvm < 1.11.0 or doing something fancy, ignore this:
.rvmrc
/.bundle/
/.yardoc
/Gemfile.lock
/_yardoc/
/coverage/
/doc/
/pkg/
/spec/reports/
/tmp/
# rspec failure tracking
.rspec_status
# byebug
.byebug_history

View file

@ -1,2 +0,0 @@
--format documentation
--color

View file

@ -1,8 +0,0 @@
sudo: false
language: ruby
rvm:
- 2.3.7
- 2.4.4
- 2.5.1
- 2.6.0
before_install: gem update --system && gem install bundler

View file

@ -1,74 +0,0 @@
# Contributor Covenant Code of Conduct
## Our Pledge
In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
nationality, personal appearance, race, religion, or sexual identity and
orientation.
## Our Standards
Examples of behavior that contributes to creating a positive environment
include:
* Using welcoming and inclusive language
* Being respectful of differing viewpoints and experiences
* Gracefully accepting constructive criticism
* Focusing on what is best for the community
* Showing empathy towards other community members
Examples of unacceptable behavior by participants include:
* The use of sexualized language or imagery and unwelcome sexual attention or
advances
* Trolling, insulting/derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or electronic
address, without explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.
## Scope
This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at ezapata@altavistaed.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project's leadership.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
available at [http://contributor-covenant.org/version/1/4][version]
[homepage]: http://contributor-covenant.org
[version]: http://contributor-covenant.org/version/1/4/

View file

@ -1 +0,0 @@
Bug reports and pull requests are welcome on GitHub at https://github.com/estebanz01/ruby-statistics. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant code of conduct](https://www.contributor-covenant.org/).

View file

@ -1,6 +0,0 @@
source "https://rubygems.org"
git_source(:github) {|repo_name| "https://github.com/#{repo_name}" }
# Specify your gem's dependencies in statistics.gemspec
gemspec

View file

@ -1,21 +0,0 @@
MIT License
Copyright (c) 2017 Esteban Zapata Rojas
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View file

@ -1,21 +0,0 @@
The MIT License (MIT)
Copyright (c) 2017 esteban zapata
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

View file

@ -1,79 +0,0 @@
# Ruby Statistics
![](https://travis-ci.org/estebanz01/ruby-statistics.svg?branch=master)
A basic ruby gem that implements some statistical methods, functions and concepts to be used in any ruby environment without depending on any mathematical software like `R`, `Matlab`, `Octave` or similar.
Unit test runs under the following ruby versions:
* Ruby 2.2.
* Ruby 2.3.1.
* Ruby 2.4.0.
* Ruby 2.5.0.
We got the inspiration from the folks at [JStat](https://github.com/jstat/jstat) and some interesting lectures about [Keystroke dynamics](http://www.biometric-solutions.com/keystroke-dynamics.html).
Some logic and algorithms are extractions or adaptations from other authors, which are referenced in the comments.
This software is released under the MIT License.
## Installation
Add this line to your application's Gemfile:
```ruby
gem 'ruby-statistics'
```
And then execute:
$ bundle
Or install it yourself as:
$ gem install ruby-statistics
## Basic Usage
just require the `statistics` gem in order to load it. If you don't have defined the `Distribution` namespace, the gem will assign an alias, reducing the number of namespaces needed to use a class.
Right now you can load:
* The whole statistics gem. `require 'statistics'`
* A namespace. `require 'statistics/distribution'`
* A class. `require 'statistics/distribution/normal'`
Feel free to use the one that is more convenient to you.
### Hello-World Example
```ruby
require 'statistics'
poisson = Distribution::Poisson.new(l) # Using Distribution alias.
normal = Statistics::Distribution::StandardNormal.new # Using all namespaces.
```
## Documentation
You can find a bit more detailed documentation of all available distributions, tests and functions in the [Documentation Index](https://github.com/estebanz01/ruby-statistics/wiki)
## Development
After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake spec` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
## Contributing
Bug reports and pull requests are welcome on GitHub at https://github.com/estebanz01/ruby-statistics. This project is intended to be a safe, welcoming space for collaboration, and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct.
## License
The gem is available as open source under the terms of the [MIT License](http://opensource.org/licenses/MIT).
## Code of Conduct
Everyone interacting in the Statistics projects codebases, issue trackers, chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/estebanz01/ruby-statistics/blob/master/CODE_OF_CONDUCT.md).
## Contact
You can contact me via:
* [Github](https://github.com/estebanz01)
* [Twitter](https://twitter.com/estebanz01)

View file

@ -1,6 +0,0 @@
require "bundler/gem_tasks"
require "rspec/core/rake_task"
RSpec::Core::RakeTask.new(:spec)
task :default => :spec

View file

@ -1,14 +0,0 @@
#!/usr/bin/env ruby
require "bundler/setup"
require "statistics"
# You can add fixtures and/or initialization code here to make experimenting
# with your gem easier. You can also use a different console, if you like.
# (If you use this, don't forget to add pry to your Gemfile!)
# require "pry"
# Pry.start
require "irb"
IRB.start(__FILE__)

View file

@ -1,8 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
IFS=$'\n\t'
set -vx
bundle install
# Do any other automated setup that you need to do here

View file

@ -1,15 +0,0 @@
# TODO: Avoid monkey-patching.
module Enumerable
def mean
self.reduce(:+) / self.length.to_f
end
def variance
mean = self.mean
self.reduce(0) { |memo, value| memo + ((value - mean) ** 2) } / (self.length - 1).to_f
end
def standard_deviation
Math.sqrt(self.variance)
end
end

View file

@ -1,120 +0,0 @@
module Math
def self.factorial(n)
return if n < 0
n = n.to_i # Only integers.
return 1 if n == 0 || n == 1
Math.gamma(n + 1) # Math.gamma(x) == (n - 1)! for integer values
end
def self.combination(n, r)
self.factorial(n)/(self.factorial(r) * self.factorial(n - r)).to_f # n!/(r! * [n - r]!)
end
def self.permutation(n, k)
self.factorial(n)/self.factorial(n - k).to_f
end
# Function adapted from the python implementation that exists in https://en.wikipedia.org/wiki/Simpson%27s_rule#Sample_implementation
# Finite integral in the interval [a, b] split up in n-intervals
def self.simpson_rule(a, b, n, &block)
unless n.even?
puts "The composite simpson's rule needs even intervals!"
return
end
h = (b - a)/n.to_f
resA = yield(a)
resB = yield(b)
sum = resA + resB
(1..n).step(2).each do |number|
res = yield(a + number * h)
sum += 4 * res
end
(1..(n-1)).step(2).each do |number|
res = yield(a + number * h)
sum += 2 * res
end
return sum * h / 3.0
end
def self.lower_incomplete_gamma_function(s, x)
# The greater the iterations, the better. That's why we are iterating 10_000 * x times
self.simpson_rule(0, x, (10_000 * x.round).round) do |t|
(t ** (s - 1)) * Math.exp(-t)
end
end
def self.beta_function(x, y)
return 1 if x == 1 && y == 1
(Math.gamma(x) * Math.gamma(y))/Math.gamma(x + y)
end
### This implementation is an adaptation of the incomplete beta function made in C by
### Lewis Van Winkle, which released the code under the zlib license.
### The whole math behind this code is described in the following post: https://codeplea.com/incomplete-beta-function-c
def self.incomplete_beta_function(x, alp, bet)
return if x < 0.0
return 1.0 if x > 1.0
tiny = 1.0E-50
if x > ((alp + 1.0)/(alp + bet + 2.0))
return 1.0 - self.incomplete_beta_function(1.0 - x, bet, alp)
end
# To avoid overflow problems, the implementation applies the logarithm properties
# to calculate in a faster and safer way the values.
lbet_ab = (Math.lgamma(alp)[0] + Math.lgamma(bet)[0] - Math.lgamma(alp + bet)[0]).freeze
front = (Math.exp(Math.log(x) * alp + Math.log(1.0 - x) * bet - lbet_ab) / alp.to_f).freeze
# This is the non-log version of the left part of the formula (before the continuous fraction)
# down_left = alp * self.beta_function(alp, bet)
# upper_left = (x ** alp) * ((1.0 - x) ** bet)
# front = upper_left/down_left
f, c, d = 1.0, 1.0, 0.0
returned_value = nil
# Let's do more iterations than the proposed implementation (200 iters)
(0..500).each do |number|
m = number/2
numerator = if number == 0
1.0
elsif number % 2 == 0
(m * (bet - m) * x)/((alp + 2.0 * m - 1.0)* (alp + 2.0 * m))
else
top = -((alp + m) * (alp + bet + m) * x)
down = ((alp + 2.0 * m) * (alp + 2.0 * m + 1.0))
top/down
end
d = 1.0 + numerator * d
d = tiny if d.abs < tiny
d = 1.0 / d
c = 1.0 + numerator / c
c = tiny if c.abs < tiny
cd = (c*d).freeze
f = f * cd
if (1.0 - cd).abs < 1.0E-10
returned_value = front * (f - 1.0)
break
end
end
returned_value
end
end

View file

@ -1,7 +0,0 @@
require File.dirname(__FILE__) + '/enumerable'
require File.dirname(__FILE__) + '/math'
Dir[ File.dirname(__FILE__) + '/statistics/**/*.rb'].each {|file| require file }
module Statistics
# Your code goes here...
end

View file

@ -1,11 +0,0 @@
Dir[File.dirname(__FILE__) + '/distribution/**/*.rb'].each {|file| require file }
module Statistics
module Distribution
end
end
# If Distribution is not defined, setup alias.
if defined?(Statistics) && !(defined?(Distribution))
Distribution = Statistics::Distribution
end

View file

@ -1,35 +0,0 @@
module Statistics
module Distribution
class Bernoulli
def self.density_function(n, p)
return if n != 0 && n != 1 # The support of the distribution is n = {0, 1}.
case n
when 0 then 1.0 - p
when 1 then p
end
end
def self.cumulative_function(n, p)
return if n != 0 && n != 1 # The support of the distribution is n = {0, 1}.
case n
when 0 then 1.0 - p
when 1 then 1.0
end
end
def self.variance(p)
p * (1.0 - p)
end
def self.skewness(p)
(1.0 - 2.0*p).to_f / Math.sqrt(p * (1.0 - p))
end
def self.kurtosis(p)
(6.0 * (p ** 2) - (6 * p) + 1) / (p * (1.0 - p))
end
end
end
end

View file

@ -1,36 +0,0 @@
module Statistics
module Distribution
class Beta
attr_accessor :alpha, :beta
def initialize(alp, bet)
self.alpha = alp.to_f
self.beta = bet.to_f
end
def cumulative_function(value)
Math.incomplete_beta_function(value, alpha, beta)
end
def density_function(value)
return 0 if value < 0 || value > 1 # Density function defined in the [0,1] interval
num = (value**(alpha - 1)) * ((1 - value)**(beta - 1))
den = Math.beta_function(alpha, beta)
num/den
end
def mode
return unless alpha > 1 && beta > 1
(alpha - 1)/(alpha + beta - 2)
end
def mean
return if alpha + beta == 0
alpha / (alpha + beta)
end
end
end
end

View file

@ -1,49 +0,0 @@
module Statistics
module Distribution
class Binomial
attr_accessor :number_of_trials, :probability_per_trial
def initialize(n, p)
self.number_of_trials = n.to_i
self.probability_per_trial = p
end
def probability_mass_function(k)
return if k < 0 || k > number_of_trials
k = k.to_i
Math.combination(number_of_trials, k) *
(probability_per_trial ** k) * ((1 - probability_per_trial) ** (number_of_trials - k))
end
def cumulative_function(k)
return if k < 0 || k > number_of_trials
k = k.to_i
p = 1 - probability_per_trial
Math.incomplete_beta_function(p, number_of_trials - k, 1 + k)
end
def mean
number_of_trials * probability_per_trial
end
def variance
mean * (1 - probability_per_trial)
end
def mode
test = (number_of_trials + 1) * probability_per_trial
returned = if test == 0 || (test % 1 != 0)
test.floor
elsif (test % 1 == 0) && (test >= 1 && test <= number_of_trials)
[test, test - 1]
elsif test == number_of_trials + 1
number_of_trials
end
returned
end
end
end
end

View file

@ -1,37 +0,0 @@
module Statistics
module Distribution
class ChiSquared
attr_accessor :degrees_of_freedom
alias_method :mean, :degrees_of_freedom
def initialize(k)
self.degrees_of_freedom = k
end
def cumulative_function(value)
k = degrees_of_freedom/2.0
Math.lower_incomplete_gamma_function(k, value/2.0)/Math.gamma(k)
end
def density_function(value)
return 0 if value < 0
common = degrees_of_freedom/2.0
left_down = (2 ** common) * Math.gamma(common)
right = (value ** (common - 1)) * Math.exp(-(value/2.0))
(1.0/left_down) * right
end
def mode
[degrees_of_freedom - 2, 0].max
end
def variance
degrees_of_freedom * 2
end
end
end
end

View file

@ -1,26 +0,0 @@
module Statistics
module Distribution
class Empirical
attr_accessor :samples
def initialize(samples:)
self.samples = samples
end
# Formula grabbed from here: https://statlect.com/asymptotic-theory/empirical-distribution
def cumulative_function(x:)
cumulative_sum = samples.reduce(0) do |summation, sample|
summation += if sample <= x
1
else
0
end
summation
end
cumulative_sum / samples.size.to_f
end
end
end
end

View file

@ -1,46 +0,0 @@
module Statistics
module Distribution
class F
attr_accessor :d1, :d2 # Degrees of freedom #1 and #2
def initialize(k, j)
self.d1 = k
self.d2 = j
end
# Formula extracted from http://www.itl.nist.gov/div898/handbook/eda/section3/eda3665.htm#CDF
def cumulative_function(value)
k = d2/(d2 + d1 * value.to_f)
1 - Math.incomplete_beta_function(k, d2/2.0, d1/2.0)
end
def density_function(value)
return if d1 < 0 || d2 < 0 # F-pdf is well defined for the [0, +infinity) interval.
val = value.to_f
upper = ((d1 * val) ** d1) * (d2**d2)
lower = (d1 * val + d2) ** (d1 + d2)
up = Math.sqrt(upper/lower.to_f)
down = val * Math.beta_function(d1/2.0, d2/2.0)
up/down.to_f
end
def mean
return if d2 <= 2
d2/(d2 - 2).to_f
end
def mode
return if d1 <= 2
left = (d1 - 2)/d1.to_f
right = d2/(d2 + 2).to_f
left * right
end
end
end
end

View file

@ -1,76 +0,0 @@
module Statistics
module Distribution
class Geometric
attr_accessor :probability_of_success, :always_success_allowed
def initialize(p, always_success: false)
self.probability_of_success = p.to_f
self.always_success_allowed = always_success
end
def density_function(k)
k = k.to_i
if always_success_allowed
return if k < 0
((1.0 - probability_of_success) ** k) * probability_of_success
else
return if k <= 0
((1.0 - probability_of_success) ** (k - 1.0)) * probability_of_success
end
end
def cumulative_function(k)
k = k.to_i
if always_success_allowed
return if k < 0
1.0 - ((1.0 - probability_of_success) ** (k + 1.0))
else
return if k <= 0
1.0 - ((1.0 - probability_of_success) ** k)
end
end
def mean
if always_success_allowed
(1.0 - probability_of_success) / probability_of_success
else
1.0 / probability_of_success
end
end
def median
if always_success_allowed
(-1.0 / Math.log2(1.0 - probability_of_success)).ceil - 1.0
else
(-1.0 / Math.log2(1.0 - probability_of_success)).ceil
end
end
def mode
if always_success_allowed
0.0
else
1.0
end
end
def variance
(1.0 - probability_of_success) / (probability_of_success ** 2)
end
def skewness
(2.0 - probability_of_success) / Math.sqrt(1.0 - probability_of_success)
end
def kurtosis
6.0 + ((probability_of_success ** 2) / (1.0 - probability_of_success))
end
end
end
end

View file

@ -1,51 +0,0 @@
module Statistics
module Distribution
class LogSeries
def self.density_function(k, p)
return if k <= 0
k = k.to_i
left = (-1.0 / Math.log(1.0 - p))
right = (p ** k).to_f
left * right / k
end
def self.cumulative_function(k, p)
return if k <= 0
# Sadly, the incomplete beta function is converging
# too fast to zero and breaking the calculation on logs.
# So, we default to the basic definition of the CDF which is
# the integral (-Inf, K) of the PDF, with P(X <= x) which can
# be solved as a summation of all PDFs from 1 to K. Note that the summation approach
# only applies to discrete distributions.
#
# right = Math.incomplete_beta_function(p, (k + 1).floor, 0) / Math.log(1.0 - p)
# 1.0 + right
result = 0.0
1.upto(k) do |number|
result += self.density_function(number, p)
end
result
end
def self.mode
1.0
end
def self.mean(p)
(-1.0 / Math.log(1.0 - p)) * (p / (1.0 - p))
end
def self.variance(p)
up = p + Math.log(1.0 - p)
down = ((1.0 - p) ** 2) * (Math.log(1.0 - p) ** 2)
(-1.0 * p) * (up / down.to_f)
end
end
end
end

View file

@ -1,51 +0,0 @@
module Statistics
module Distribution
class NegativeBinomial
attr_accessor :number_of_failures, :probability_per_trial
def initialize(r, p)
self.number_of_failures = r.to_i
self.probability_per_trial = p
end
def probability_mass_function(k)
return if number_of_failures < 0 || k < 0 || k > number_of_failures
left = Math.combination(k + number_of_failures - 1, k)
right = ((1 - probability_per_trial) ** number_of_failures) * (probability_per_trial ** k)
left * right
end
def cumulative_function(k)
return if k < 0 || k > number_of_failures
k = k.to_i
1.0 - Math.incomplete_beta_function(probability_per_trial, k + 1, number_of_failures)
end
def mean
(probability_per_trial * number_of_failures)/(1 - probability_per_trial).to_f
end
def variance
(probability_per_trial * number_of_failures)/((1 - probability_per_trial) ** 2).to_f
end
def skewness
(1 + probability_per_trial).to_f / Math.sqrt(probability_per_trial * number_of_failures)
end
def mode
if number_of_failures > 1
up = probability_per_trial * (number_of_failures - 1)
down = (1 - probability_per_trial).to_f
(up/down).floor
elsif number_of_failures <= 1
0.0
end
end
end
end
end

View file

@ -1,139 +0,0 @@
module Statistics
module Distribution
class Normal
attr_accessor :mean, :standard_deviation, :variance
alias_method :mode, :mean
def initialize(avg, std)
self.mean = avg.to_f
self.standard_deviation = std.to_f
self.variance = std.to_f**2
end
def cumulative_function(value)
(1/2.0) * (1.0 + Math.erf((value - mean)/(standard_deviation * Math.sqrt(2.0))))
end
def density_function(value)
return 0 if standard_deviation <= 0
up_right = (value - mean)**2.0
down_right = 2.0 * variance
right = Math.exp(-(up_right/down_right))
left_down = Math.sqrt(2.0 * Math::PI * variance)
left_up = 1.0
(left_up/(left_down) * right)
end
## Marsaglia polar method implementation for random gaussian (normal) number generation.
# References:
# https://en.wikipedia.org/wiki/Marsaglia_polar_method
# https://math.stackexchange.com/questions/69245/transform-uniform-distribution-to-normal-distribution-using-lindeberg-l%C3%A9vy-clt
# https://www.projectrhea.org/rhea/index.php/The_principles_for_how_to_generate_random_samples_from_a_Gaussian_distribution
def random(elements: 1, seed: Random.new_seed)
results = []
# Setup seed
srand(seed)
# Number of random numbers to be generated.
elements.times do
x, y, r = 0.0, 0.0, 0.0
# Find an (x, y) point in the x^2 + y^2 < 1 circumference.
loop do
x = 2.0 * rand - 1.0
y = 2.0 * rand - 1.0
r = (x ** 2) + (y ** 2)
break unless r >= 1.0 || r == 0
end
# Project the random point to the required random distance
r = Math.sqrt(-2.0 * Math.log(r) / r)
# Transform the random distance to a gaussian value and append it to the results array
results << mean + x * r * standard_deviation
end
if elements == 1
results.first
else
results
end
end
end
class StandardNormal < Normal
def initialize
super(0, 1) # Mean = 0, Std = 1
end
def density_function(value)
pow = (value**2)/2.0
euler = Math.exp(-pow)
euler/Math.sqrt(2 * Math::PI)
end
end
# Inverse Standard Normal distribution:
# References:
# https://en.wikipedia.org/wiki/Inverse_distribution
# http://www.source-code.biz/snippets/vbasic/9.htm
class InverseStandardNormal < StandardNormal
A1 = -39.6968302866538
A2 = 220.946098424521
A3 = -275.928510446969
A4 = 138.357751867269
A5 = -30.6647980661472
A6 = 2.50662827745924
B1 = -54.4760987982241
B2 = 161.585836858041
B3 = -155.698979859887
B4 = 66.8013118877197
B5 = -13.2806815528857
C1 = -7.78489400243029E-03
C2 = -0.322396458041136
C3 = -2.40075827716184
C4 = -2.54973253934373
C5 = 4.37466414146497
C6 = 2.93816398269878
D1 = 7.78469570904146E-03
D2 = 0.32246712907004
D3 = 2.445134137143
D4 = 3.75440866190742
P_LOW = 0.02425
P_HIGH = 1 - P_LOW
def density_function(_)
raise NotImplementedError
end
def random(elements: 1, seed: Random.new_seed)
raise NotImplementedError
end
def cumulative_function(value)
return if value < 0.0 || value > 1.0
return -1.0 * Float::INFINITY if value.zero?
return Float::INFINITY if value == 1.0
if value < P_LOW
q = Math.sqrt((Math.log(value) * -2.0))
(((((C1 * q + C2) * q + C3) * q + C4) * q + C5) * q + C6) / ((((D1 * q + D2) * q + D3) * q + D4) * q + 1.0)
elsif value <= P_HIGH
q = value - 0.5
r = q ** 2
(((((A1 * r + A2) * r + A3) * r + A4) * r + A5) * r + A6) * q / (((((B1 * r + B2) * r + B3) * r + B4) * r + B5) * r + 1.0)
else
q = Math.sqrt((Math.log(1 - value) * -2.0))
- (((((C1 * q + C2) * q + C3) * q + C4) * q + C5) * q + C6) / ((((D1 * q + D2) * q + D3) * q + D4) * q + 1)
end
end
end
end
end

View file

@ -1,38 +0,0 @@
module Statistics
module Distribution
class Poisson
attr_accessor :expected_number_of_occurrences
alias_method :mean, :expected_number_of_occurrences
alias_method :variance, :expected_number_of_occurrences
def initialize(l)
self.expected_number_of_occurrences = l
end
def probability_mass_function(k)
return if k < 0 || expected_number_of_occurrences < 0
k = k.to_i
upper = (expected_number_of_occurrences ** k) * Math.exp(-expected_number_of_occurrences)
lower = Math.factorial(k)
upper/lower.to_f
end
def cumulative_function(k)
return if k < 0 || expected_number_of_occurrences < 0
k = k.to_i
upper = Math.lower_incomplete_gamma_function((k + 1).floor, expected_number_of_occurrences)
lower = Math.factorial(k.floor)
# We need the right tail, i.e.: The upper incomplete gamma function. This can be
# achieved by doing a substraction between 1 and the lower incomplete gamma function.
1 - (upper/lower.to_f)
end
end
end
end

View file

@ -1,82 +0,0 @@
module Statistics
module Distribution
class TStudent
attr_accessor :degrees_of_freedom
attr_reader :mode
def initialize(v)
self.degrees_of_freedom = v
@mode = 0
end
### Extracted from https://codeplea.com/incomplete-beta-function-c
### This function is shared under zlib license and the author is Lewis Van Winkle
def cumulative_function(value)
upper = (value + Math.sqrt(value * value + degrees_of_freedom))
lower = (2.0 * Math.sqrt(value * value + degrees_of_freedom))
x = upper/lower
alpha = degrees_of_freedom/2.0
beta = degrees_of_freedom/2.0
Math.incomplete_beta_function(x, alpha, beta)
end
def density_function(value)
return if degrees_of_freedom <= 0
upper = Math.gamma((degrees_of_freedom + 1)/2.0)
lower = Math.sqrt(degrees_of_freedom * Math::PI) * Math.gamma(degrees_of_freedom/2.0)
left = upper/lower
right = (1 + ((value ** 2)/degrees_of_freedom.to_f)) ** -((degrees_of_freedom + 1)/2.0)
left * right
end
def mean
0 if degrees_of_freedom > 1
end
def variance
if degrees_of_freedom > 1 && degrees_of_freedom <= 2
Float::INFINITY
elsif degrees_of_freedom > 2
degrees_of_freedom/(degrees_of_freedom - 2.0)
end
end
# Quantile function extracted from http://www.jennessent.com/arcview/idf.htm
# TODO: Make it truly Student's T sample.
def random(elements: 1, seed: Random.new_seed)
warn 'This is an alpha version code. The generated sample is similar to an uniform distribution'
srand(seed)
v = degrees_of_freedom
results = []
# Because the Quantile function of a student-t distribution is between (-Infinity, y)
# we setup an small threshold in order to properly compute the integral
threshold = 10_000.0e-12
elements.times do
y = rand
results << Math.simpson_rule(threshold, y, 10_000) do |t|
up = Math.gamma((v+1)/2.0)
down = Math.sqrt(Math::PI * v) * Math.gamma(v/2.0)
right = (1 + ((y ** 2)/v.to_f)) ** ((v+1)/2.0)
left = up/down.to_f
left * right
end
end
if elements == 1
results.first
else
results
end
end
end
end
end

View file

@ -1,40 +0,0 @@
module Statistics
module Distribution
class Uniform
attr_accessor :left, :right
def initialize(a, b)
self.left = a.to_f
self.right = b.to_f
end
def density_function(value)
if value >= left && value <= right
1/(right - left)
else
0
end
end
def cumulative_function(value)
if value < left
0
elsif value >= left && value <= right
(value - left)/(right - left)
else
1
end
end
def mean
(1/2.0) * ( left + right )
end
alias_method :median, :mean
def variance
(1/12.0) * ( right - left ) ** 2
end
end
end
end

View file

@ -1,66 +0,0 @@
module Statistics
module Distribution
class Weibull
attr_accessor :shape, :scale # k and lambda
def initialize(k, lamb)
self.shape = k.to_f
self.scale = lamb.to_f
end
def cumulative_function(random_value)
return 0 if random_value < 0
1 - Math.exp(-((random_value/scale) ** shape))
end
def density_function(value)
return if shape <= 0 || scale <= 0
return 0 if value < 0
left = shape/scale
center = (value/scale)**(shape - 1)
right = Math.exp(-((value/scale)**shape))
left * center * right
end
def mean
scale * Math.gamma(1 + (1/shape))
end
def mode
return 0 if shape <= 1
scale * (((shape - 1)/shape) ** (1/shape))
end
def variance
left = Math.gamma(1 + (2/shape))
right = Math.gamma(1 + (1/shape)) ** 2
(scale ** 2) * (left - right)
end
# Using the inverse CDF function, also called quantile, we can calculate
# a random sample that follows a weibull distribution.
#
# Formula extracted from https://www.taygeta.com/random/weibull.html
def random(elements: 1, seed: Random.new_seed)
results = []
srand(seed)
elements.times do
results << ((-1/scale) * Math.log(1 - rand)) ** (1/shape)
end
if elements == 1
results.first
else
results
end
end
end
end
end

View file

@ -1,71 +0,0 @@
module Statistics
class SpearmanRankCoefficient
def self.rank(data:, return_ranks_only: true)
descending_order_data = data.sort { |a, b| b <=> a }
rankings = {}
data.each do |value|
# If we have ties, the find_index method will only retrieve the index of the
# first element in the list (i.e, the most close to the left of the array),
# so when a tie is detected, we increase the temporal ranking by the number of
# counted elements at that particular time and then we increase the counter.
temporal_ranking = descending_order_data.find_index(value) + 1 # 0-index
if rankings.fetch(value, false)
rankings[value][:rank] += (temporal_ranking + rankings[value][:counter])
rankings[value][:counter] += 1
rankings[value][:tie_rank] = rankings[value][:rank] / rankings[value][:counter].to_f
else
rankings[value] = { counter: 1, rank: temporal_ranking, tie_rank: temporal_ranking }
end
end
if return_ranks_only
data.map do |value|
rankings[value][:tie_rank]
end
else
rankings
end
end
# Formulas extracted from: https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-guide.php
def self.coefficient(set_one, set_two)
raise 'Both group sets must have the same number of cases.' if set_one.size != set_two.size
return if set_one.size == 0 && set_two.size == 0
set_one_mean, set_two_mean = set_one.mean, set_two.mean
have_tie_ranks = (set_one + set_two).any? { |rank| rank.is_a?(Float) }
if have_tie_ranks
numerator = 0
squared_differences_set_one = 0
squared_differences_set_two = 0
set_one.size.times do |idx|
local_diff_one = (set_one[idx] - set_one_mean)
local_diff_two = (set_two[idx] - set_two_mean)
squared_differences_set_one += local_diff_one ** 2
squared_differences_set_two += local_diff_two ** 2
numerator += local_diff_one * local_diff_two
end
denominator = Math.sqrt(squared_differences_set_one * squared_differences_set_two)
numerator / denominator.to_f # This is rho or spearman's coefficient.
else
sum_squared_differences = set_one.each_with_index.reduce(0) do |memo, (rank_one, index)|
memo += ((rank_one - set_two[index]) ** 2)
memo
end
numerator = 6 * sum_squared_differences
denominator = ((set_one.size ** 3) - set_one.size)
1.0 - (numerator / denominator.to_f) # This is rho or spearman's coefficient.
end
end
end
end

View file

@ -1,11 +0,0 @@
Dir[File.dirname(__FILE__) + '/statistical_test/**/*.rb'].each {|file| require file }
module Statistics
module StatisticalTest
end
end
# If StatisticalTest is not defined, setup alias.
if defined?(Statistics) && !(defined?(StatisticalTest))
StatisticalTest = Statistics::StatisticalTest
end

View file

@ -1,42 +0,0 @@
module Statistics
module StatisticalTest
class ChiSquaredTest
def self.chi_statistic(expected, observed)
# If the expected is a number, we asumme that all expected observations
# has the same probability to occur, hence we expect to see the same number
# of expected observations per each observed value
statistic = if expected.is_a? Numeric
observed.reduce(0) do |memo, observed_value|
up = (observed_value - expected) ** 2
memo += (up/expected.to_f)
end
else
expected.each_with_index.reduce(0) do |memo, (expected_value, index)|
up = (observed[index] - expected_value) ** 2
memo += (up/expected_value.to_f)
end
end
[statistic, observed.size - 1]
end
def self.goodness_of_fit(alpha, expected, observed)
chi_score, df = *self.chi_statistic(expected, observed) # Splat array result
return if chi_score.nil? || df.nil?
probability = Distribution::ChiSquared.new(df).cumulative_function(chi_score)
p_value = 1 - probability
# According to https://stats.stackexchange.com/questions/29158/do-you-reject-the-null-hypothesis-when-p-alpha-or-p-leq-alpha
# We can assume that if p_value <= alpha, we can safely reject the null hypothesis, ie. accept the alternative hypothesis.
{ probability: probability,
p_value: p_value,
alpha: alpha,
null: alpha < p_value,
alternative: p_value <= alpha,
confidence_level: 1 - alpha }
end
end
end
end

View file

@ -1,83 +0,0 @@
module Statistics
module StatisticalTest
class FTest
# This method calculates the one-way ANOVA F-test statistic.
# We assume that all specified arguments are arrays.
# It returns an array with three elements:
# [F-statistic or F-score, degrees of freedom numerator, degrees of freedom denominator].
#
# Formulas extracted from:
# https://courses.lumenlearning.com/boundless-statistics/chapter/one-way-anova/
# http://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704_HypothesisTesting-ANOVA/BS704_HypothesisTesting-Anova_print.html
def self.anova_f_score(*args)
# If only two groups have been specified as arguments, we follow the classic F-Test for
# equality of variances, which is the ratio between the variances.
f_score = nil
df1 = nil
df2 = nil
if args.size == 2
variances = [args[0].variance, args[1].variance]
f_score = variances.max/variances.min.to_f
df1 = 1 # k-1 (k = 2)
df2 = args.flatten.size - 2 # N-k (k = 2)
elsif args.size > 2
total_groups = args.size
total_elements = args.flatten.size
overall_mean = args.flatten.mean
sample_sizes = args.map(&:size)
sample_means = args.map(&:mean)
sample_stds = args.map(&:standard_deviation)
# Variance between groups
iterator = sample_sizes.each_with_index
variance_between_groups = iterator.reduce(0) do |summation, (size, index)|
inner_calculation = size * ((sample_means[index] - overall_mean) ** 2)
summation += (inner_calculation / (total_groups - 1).to_f)
end
# Variance within groups
variance_within_groups = (0...total_groups).reduce(0) do |outer_summation, group_index|
outer_summation += args[group_index].reduce(0) do |inner_sumation, observation|
inner_calculation = ((observation - sample_means[group_index]) ** 2)
inner_sumation += (inner_calculation / (total_elements - total_groups).to_f)
end
end
f_score = variance_between_groups/variance_within_groups.to_f
df1 = total_groups - 1
df2 = total_elements - total_groups
end
[f_score, df1, df2]
end
# This method expects the alpha value and the groups to calculate the one-way ANOVA test.
# It returns a hash with multiple information and the test result (if reject the null hypotesis or not).
# Keep in mind that the values for the alternative key (true/false) does not imply that the alternative hypothesis
# is TRUE or FALSE. It's a minor notation advantage to decide if reject the null hypothesis or not.
def self.one_way_anova(alpha, *args)
f_score, df1, df2 = *self.anova_f_score(*args) # Splat array result
return if f_score.nil? || df1.nil? || df2.nil?
probability = Distribution::F.new(df1, df2).cumulative_function(f_score)
p_value = 1 - probability
# According to https://stats.stackexchange.com/questions/29158/do-you-reject-the-null-hypothesis-when-p-alpha-or-p-leq-alpha
# We can assume that if p_value <= alpha, we can safely reject the null hypothesis, ie. accept the alternative hypothesis.
{ probability: probability,
p_value: p_value,
alpha: alpha,
null: alpha < p_value,
alternative: p_value <= alpha,
confidence_level: 1 - alpha }
end
end
end
end

View file

@ -1,70 +0,0 @@
module Statistics
module StatisticalTest
class KolmogorovSmirnovTest
# Common alpha, and critical D are calculated following formulas from: https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test#Two-sample_Kolmogorov%E2%80%93Smirnov_test
def self.two_samples(group_one:, group_two:, alpha: 0.05)
samples = group_one + group_two # We can use unbalaced group samples
ecdf_one = Distribution::Empirical.new(samples: group_one)
ecdf_two = Distribution::Empirical.new(samples: group_two)
d_max = samples.sort.map do |sample|
d1 = ecdf_one.cumulative_function(x: sample)
d2 = ecdf_two.cumulative_function(x: sample)
(d1 - d2).abs
end.max
# TODO: Validate calculation of Common alpha.
common_alpha = Math.sqrt((-0.5 * Math.log(alpha)))
radicand = (group_one.size + group_two.size) / (group_one.size * group_two.size).to_f
critical_d = common_alpha * Math.sqrt(radicand)
# critical_d = self.critical_d(alpha: alpha, n: samples.size)
# We are unable to calculate the p_value, because we don't have the Kolmogorov distribution
# defined. We reject the null hypotesis if Dmax is > than Dcritical.
{ d_max: d_max,
d_critical: critical_d,
total_samples: samples.size,
alpha: alpha,
null: d_max <= critical_d,
alternative: d_max > critical_d,
confidence_level: 1.0 - alpha }
end
# This is an implementation of the formula presented by Paul Molin and Hervé Abdi in a paper,
# called "New Table and numerical approximations for Kolmogorov-Smirnov / Lilliefors / Van Soest
# normality test".
# In this paper, the authors defines a couple of 6th-degree polynomial functions that allow us
# to find an aproximation of the real critical value. This is based in the conclusions made by
# Dagnelie (1968), where indicates that critical values given by Lilliefors can be approximated
# numerically.
#
# In general, the formula found is:
# C(N, alpha) ^ -2 = A(alpha) * N + B(alpha).
#
# Where A(alpha), B(alpha) are two 6th degree polynomial functions computed using the principle
# of Monte Carlo simulations.
#
# paper can be found here: https://utdallas.edu/~herve/MolinAbdi1998-LillieforsTechReport.pdf
# def self.critical_d(alpha:, n:)
# confidence = 1.0 - alpha
# a_alpha = 6.32207539843126 -17.1398870006148 * confidence +
# 38.42812675101057 * (confidence ** 2) - 45.93241384693391 * (confidence ** 3) +
# 7.88697700041829 * (confidence ** 4) + 29.79317711037858 * (confidence ** 5) -
# 18.48090137098585 * (confidence ** 6)
# b_alpha = 12.940399038404 - 53.458334259532 * confidence +
# 186.923866119699 * (confidence ** 2) - 410.582178349305 * (confidence ** 3) +
# 517.377862566267 * (confidence ** 4) - 343.581476222384 * (confidence ** 5) +
# 92.123451358715 * (confidence ** 6)
# Math.sqrt(1.0 / (a_alpha * n + b_alpha))
# end
end
KSTest = KolmogorovSmirnovTest # Alias
end
end

View file

@ -1,92 +0,0 @@
module Statistics
module StatisticalTest
class TTest
# Errors for Zero std
class ZeroStdError < StandardError
STD_ERROR_MSG = 'Standard deviation for the difference or group is zero. Please, reconsider sample contents'.freeze
end
# Perform a T-Test for one or two samples.
# For the tails param, we need a symbol: :one_tail or :two_tail
def self.perform(alpha, tails, *args)
return if args.size < 2
degrees_of_freedom = 0
# If the comparison mean has been specified
t_score = if args[0].is_a? Numeric
data_mean = args[1].mean
data_std = args[1].standard_deviation
raise ZeroStdError, ZeroStdError::STD_ERROR_MSG if data_std == 0
comparison_mean = args[0]
degrees_of_freedom = args[1].size
(data_mean - comparison_mean)/(data_std / Math.sqrt(args[1].size).to_f).to_f
else
sample_left_mean = args[0].mean
sample_left_variance = args[0].variance
sample_right_variance = args[1].variance
sample_right_mean = args[1].mean
degrees_of_freedom = args.flatten.size - 2
left_root = sample_left_variance/args[0].size.to_f
right_root = sample_right_variance/args[1].size.to_f
standard_error = Math.sqrt(left_root + right_root)
(sample_left_mean - sample_right_mean).abs/standard_error.to_f
end
t_distribution = Distribution::TStudent.new(degrees_of_freedom)
probability = t_distribution.cumulative_function(t_score)
# Steps grabbed from https://support.minitab.com/en-us/minitab/18/help-and-how-to/statistics/basic-statistics/supporting-topics/basics/manually-calculate-a-p-value/
# See https://github.com/estebanz01/ruby-statistics/issues/23
p_value = if tails == :two_tail
2 * (1 - t_distribution.cumulative_function(t_score.abs))
else
1 - probability
end
{ t_score: t_score,
probability: probability,
p_value: p_value,
alpha: alpha,
null: alpha < p_value,
alternative: p_value <= alpha,
confidence_level: 1 - alpha }
end
def self.paired_test(alpha, tails, left_group, right_group)
raise StandardError, 'both samples are the same' if left_group == right_group
# Handy snippet grabbed from https://stackoverflow.com/questions/2682411/ruby-sum-corresponding-members-of-two-or-more-arrays
differences = [left_group, right_group].transpose.map { |value| value.reduce(:-) }
degrees_of_freedom = differences.size - 1
difference_std = differences.standard_deviation
raise ZeroStdError, ZeroStdError::STD_ERROR_MSG if difference_std == 0
down = difference_std/Math.sqrt(differences.size)
t_score = (differences.mean - 0)/down.to_f
probability = Distribution::TStudent.new(degrees_of_freedom).cumulative_function(t_score)
p_value = 1 - probability
p_value *= 2 if tails == :two_tail
{ t_score: t_score,
probability: probability,
p_value: p_value,
alpha: alpha,
null: alpha < p_value,
alternative: p_value <= alpha,
confidence_level: 1 - alpha }
end
end
end
end

View file

@ -1,95 +0,0 @@
module Statistics
module StatisticalTest
class WilcoxonRankSumTest
def rank(elements)
ranked_elements = {}
elements.sort.each_with_index do |element, index|
if ranked_elements.fetch(element, false)
# This allow us to solve the ties easily when performing the rank summation per group
ranked_elements[element][:counter] += 1
ranked_elements[element][:rank] += (index + 1)
else
ranked_elements[element] = { counter: 1, rank: (index + 1) }
end
end
# ranked_elements = [{ x => { counter: 1, rank: y } ]
ranked_elements
end
# Steps to perform the calculation are based on http://www.mit.edu/~6.s085/notes/lecture5.pdf
def perform(alpha, tails, group_one, group_two)
# Size for each group
n1, n2 = group_one.size, group_two.size
# Rank all data
total_ranks = rank(group_one + group_two)
# sum rankings per group
r1 = ranked_sum_for(total_ranks, group_one)
r2 = ranked_sum_for(total_ranks, group_two)
# calculate U statistic
u1 = (n1 * (n1 + 1)/2.0) - r1
u2 = (n2 * (n2 + 1)/2.0 ) - r2
u_statistic = [u1.abs, u2.abs].min
median_u = (n1 * n2)/2.0
ties = total_ranks.values.select { |element| element[:counter] > 1 }
std_u = if ties.size > 0
corrected_sigma(ties, n1, n2)
else
Math.sqrt((n1 * n2 * (n1 + n2 + 1))/12.0)
end
z = (u_statistic - median_u)/std_u
# Most literature are not very specific about the normal distribution to be used.
# We ran multiple tests with a Normal(median_u, std_u) and Normal(0, 1) and we found
# the latter to be more aligned with the results.
probability = Distribution::StandardNormal.new.cumulative_function(z.abs)
p_value = 1 - probability
p_value *= 2 if tails == :two_tail
{ probability: probability,
u: u_statistic,
z: z,
p_value: p_value,
alpha: alpha,
null: alpha < p_value,
alternative: p_value <= alpha,
confidence_level: 1 - alpha }
end
# Formula extracted from http://www.statstutor.ac.uk/resources/uploaded/mannwhitney.pdf
private def corrected_sigma(ties, total_group_one, total_group_two)
n = total_group_one + total_group_two
rank_sum = ties.reduce(0) do |memo, t|
memo += ((t[:counter] ** 3) - t[:counter])/12.0
end
left = (total_group_one * total_group_two)/(n * (n - 1)).to_f
right = (((n ** 3) - n)/12.0) - rank_sum
Math.sqrt(left * right)
end
private def ranked_sum_for(total, group)
# sum rankings per group
group.reduce(0) do |memo, element|
rank_of_element = total[element][:rank] / total[element][:counter].to_f
memo += rank_of_element
end
end
end
# Both test are the same. To keep the selected name, we just alias the class
# with the implementation.
MannWhitneyU = WilcoxonRankSumTest
end
end

View file

@ -1,3 +0,0 @@
module Statistics
VERSION = "2.1.1"
end

View file

@ -1,34 +0,0 @@
# coding: utf-8
lib = File.expand_path("../lib", __FILE__)
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
require "statistics/version"
Gem::Specification.new do |spec|
spec.name = "ruby-statistics"
spec.version = Statistics::VERSION
spec.authors = ["esteban zapata"]
spec.email = ["estebanz01@outlook.com"]
spec.summary = %q{A ruby gem for som specific statistics. Inspired by the jStat js library.}
spec.description = %q{This gem is intended to accomplish the same purpose as jStat js library:
to provide ruby with statistical capabilities without the need
of a statistical programming language like R or Octave. Some functions
and capabilities are an implementation from other authors and are
referenced properly in the class/method.}
spec.homepage = "https://github.com/estebanz01/ruby-statistics"
spec.license = "MIT"
# Prevent pushing this gem to RubyGems.org. To allow pushes either set the 'allowed_push_host'
# to allow pushing to a single host or delete this section to allow pushing to any host.
spec.files = `git ls-files -z`.split("\x0").reject do |f|
f.match(%r{^(test|spec|features)/})
end
spec.bindir = "exe"
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
spec.require_paths = ["lib"]
spec.add_development_dependency "rake", '~> 12.0', '>= 12.0.0'
spec.add_development_dependency "rspec", '~> 3.6', '>= 3.6.0'
spec.add_development_dependency "grb", '~> 0.4.1', '>= 0.4.1'
spec.add_development_dependency 'byebug', '~> 9.1.0', '>= 9.1.0'
end