debian-mirror-gitlab/ruby-statistics/lib/math.rb

121 lines
3.4 KiB
Ruby
Raw Normal View History

2019-10-03 23:17:56 +05:30
module Math
def self.factorial(n)
return if n < 0
n = n.to_i # Only integers.
return 1 if n == 0 || n == 1
Math.gamma(n + 1) # Math.gamma(x) == (n - 1)! for integer values
end
def self.combination(n, r)
self.factorial(n)/(self.factorial(r) * self.factorial(n - r)).to_f # n!/(r! * [n - r]!)
end
def self.permutation(n, k)
self.factorial(n)/self.factorial(n - k).to_f
end
# Function adapted from the python implementation that exists in https://en.wikipedia.org/wiki/Simpson%27s_rule#Sample_implementation
# Finite integral in the interval [a, b] split up in n-intervals
def self.simpson_rule(a, b, n, &block)
unless n.even?
puts "The composite simpson's rule needs even intervals!"
return
end
h = (b - a)/n.to_f
resA = yield(a)
resB = yield(b)
sum = resA + resB
(1..n).step(2).each do |number|
res = yield(a + number * h)
sum += 4 * res
end
(1..(n-1)).step(2).each do |number|
res = yield(a + number * h)
sum += 2 * res
end
return sum * h / 3.0
end
def self.lower_incomplete_gamma_function(s, x)
# The greater the iterations, the better. That's why we are iterating 10_000 * x times
self.simpson_rule(0, x, (10_000 * x.round).round) do |t|
(t ** (s - 1)) * Math.exp(-t)
end
end
def self.beta_function(x, y)
return 1 if x == 1 && y == 1
(Math.gamma(x) * Math.gamma(y))/Math.gamma(x + y)
end
### This implementation is an adaptation of the incomplete beta function made in C by
### Lewis Van Winkle, which released the code under the zlib license.
### The whole math behind this code is described in the following post: https://codeplea.com/incomplete-beta-function-c
def self.incomplete_beta_function(x, alp, bet)
return if x < 0.0
return 1.0 if x > 1.0
tiny = 1.0E-50
if x > ((alp + 1.0)/(alp + bet + 2.0))
return 1.0 - self.incomplete_beta_function(1.0 - x, bet, alp)
end
# To avoid overflow problems, the implementation applies the logarithm properties
# to calculate in a faster and safer way the values.
lbet_ab = (Math.lgamma(alp)[0] + Math.lgamma(bet)[0] - Math.lgamma(alp + bet)[0]).freeze
front = (Math.exp(Math.log(x) * alp + Math.log(1.0 - x) * bet - lbet_ab) / alp.to_f).freeze
# This is the non-log version of the left part of the formula (before the continuous fraction)
# down_left = alp * self.beta_function(alp, bet)
# upper_left = (x ** alp) * ((1.0 - x) ** bet)
# front = upper_left/down_left
f, c, d = 1.0, 1.0, 0.0
returned_value = nil
# Let's do more iterations than the proposed implementation (200 iters)
(0..500).each do |number|
m = number/2
numerator = if number == 0
1.0
elsif number % 2 == 0
(m * (bet - m) * x)/((alp + 2.0 * m - 1.0)* (alp + 2.0 * m))
else
top = -((alp + m) * (alp + bet + m) * x)
down = ((alp + 2.0 * m) * (alp + 2.0 * m + 1.0))
top/down
end
d = 1.0 + numerator * d
d = tiny if d.abs < tiny
d = 1.0 / d
c = 1.0 + numerator / c
c = tiny if c.abs < tiny
cd = (c*d).freeze
f = f * cd
if (1.0 - cd).abs < 1.0E-10
returned_value = front * (f - 1.0)
break
end
end
returned_value
end
end