83 lines
2.4 KiB
Ruby
83 lines
2.4 KiB
Ruby
|
module Statistics
|
||
|
module Distribution
|
||
|
class TStudent
|
||
|
attr_accessor :degrees_of_freedom
|
||
|
attr_reader :mode
|
||
|
|
||
|
def initialize(v)
|
||
|
self.degrees_of_freedom = v
|
||
|
@mode = 0
|
||
|
end
|
||
|
|
||
|
### Extracted from https://codeplea.com/incomplete-beta-function-c
|
||
|
### This function is shared under zlib license and the author is Lewis Van Winkle
|
||
|
def cumulative_function(value)
|
||
|
upper = (value + Math.sqrt(value * value + degrees_of_freedom))
|
||
|
lower = (2.0 * Math.sqrt(value * value + degrees_of_freedom))
|
||
|
|
||
|
x = upper/lower
|
||
|
|
||
|
alpha = degrees_of_freedom/2.0
|
||
|
beta = degrees_of_freedom/2.0
|
||
|
|
||
|
Math.incomplete_beta_function(x, alpha, beta)
|
||
|
end
|
||
|
|
||
|
def density_function(value)
|
||
|
return if degrees_of_freedom <= 0
|
||
|
|
||
|
upper = Math.gamma((degrees_of_freedom + 1)/2.0)
|
||
|
lower = Math.sqrt(degrees_of_freedom * Math::PI) * Math.gamma(degrees_of_freedom/2.0)
|
||
|
left = upper/lower
|
||
|
right = (1 + ((value ** 2)/degrees_of_freedom.to_f)) ** -((degrees_of_freedom + 1)/2.0)
|
||
|
|
||
|
left * right
|
||
|
end
|
||
|
|
||
|
def mean
|
||
|
0 if degrees_of_freedom > 1
|
||
|
end
|
||
|
|
||
|
def variance
|
||
|
if degrees_of_freedom > 1 && degrees_of_freedom <= 2
|
||
|
Float::INFINITY
|
||
|
elsif degrees_of_freedom > 2
|
||
|
degrees_of_freedom/(degrees_of_freedom - 2.0)
|
||
|
end
|
||
|
end
|
||
|
|
||
|
# Quantile function extracted from http://www.jennessent.com/arcview/idf.htm
|
||
|
# TODO: Make it truly Student's T sample.
|
||
|
def random(elements: 1, seed: Random.new_seed)
|
||
|
warn 'This is an alpha version code. The generated sample is similar to an uniform distribution'
|
||
|
srand(seed)
|
||
|
|
||
|
v = degrees_of_freedom
|
||
|
results = []
|
||
|
|
||
|
# Because the Quantile function of a student-t distribution is between (-Infinity, y)
|
||
|
# we setup an small threshold in order to properly compute the integral
|
||
|
threshold = 10_000.0e-12
|
||
|
|
||
|
elements.times do
|
||
|
y = rand
|
||
|
results << Math.simpson_rule(threshold, y, 10_000) do |t|
|
||
|
up = Math.gamma((v+1)/2.0)
|
||
|
down = Math.sqrt(Math::PI * v) * Math.gamma(v/2.0)
|
||
|
right = (1 + ((y ** 2)/v.to_f)) ** ((v+1)/2.0)
|
||
|
left = up/down.to_f
|
||
|
|
||
|
left * right
|
||
|
end
|
||
|
end
|
||
|
|
||
|
if elements == 1
|
||
|
results.first
|
||
|
else
|
||
|
results
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
end
|