info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#assignments
---
# Service Ping Guide **(FREE SELF)**
> Introduced in GitLab Ultimate 11.2, more statistics.
This guide describes Service Ping's purpose and how it's implemented.
For more information about Product Intelligence, see:
Service Ping is a process in GitLab that collects and sends a weekly payload to GitLab Inc.
The payload provides important high-level data that helps our product, support,
and sales teams understand how GitLab is used. For example, the data helps to:
- Compare counts month over month (or week over week) to get a rough sense for how an instance uses
different product features.
- Collect other facts that help us classify and understand GitLab installations.
- Calculate our Stage Monthly Active Users (SMAU), which helps to measure the success of our stages
and features.
Service Ping information is not anonymous. It's linked to the instance's hostname. However, it does
not contain project names, usernames, or any other specific data.
Sending a Service Ping payload is optional and can be [disabled](#disable-service-ping) on any self-managed instance.
When Service Ping is enabled, GitLab gathers data from the other instances
and can show your instance's usage statistics to your users.
### Terminology
We use the following terminology to describe the Service Ping components:
- **Service Ping**: the process that collects and generates a JSON payload.
- **Service Data**: the contents of the Service Ping JSON payload. This includes metrics.
- **Metrics**: primarily made up of row counts for different tables in an instance's database. Each
metric has a corresponding [metric definition](metrics_dictionary.md#metrics-definition-and-validation)
in a YAML file.
### Why should we enable Service Ping?
- The main purpose of Service Ping is to build a better GitLab. Data about how GitLab is used is collected to better understand feature/stage adoption and usage, which helps us understand how GitLab is adding value and helps our team better understand the reasons why people use GitLab and with this knowledge we're able to make better product decisions.
- As a benefit of having Service Ping active, GitLab lets you analyze the users' activities over time of your GitLab installation.
- As a benefit of having Service Ping active, GitLab provides you with The DevOps Report,which gives you an overview of your entire instance's adoption of Concurrent DevOps from planning to monitoring.
- You get better, more proactive support. (assuming that our TAMs and support organization used the data to deliver more value)
- You get insight and advice into how to get the most value out of your investment in GitLab. Wouldn't you want to know that a number of features or values are not being adopted in your organization?
- You get a report that illustrates how you compare against other similar organizations (anonymized), with specific advice and recommendations on how to improve your DevOps processes.
- Service Ping is enabled by default. To disable it, see [Disable Service Ping](#disable-service-ping).
- When Service Ping is enabled, you have the option to participate in our [Registration Features Program](#registration-features-program) and receive free paid features.
Starting with GitLab version 14.1, free self-managed users running [GitLab EE](../ee_features.md) can receive paid features by registering with GitLab and sending us activity data via [Service Ping](#what-is-service-ping). Features introduced here do not remove the feature from its paid tier. Users can continue to access the features in a paid tier without sharing usage data.
Registration is not yet required for participation, but will be added in a future milestone.
### Limitations
- Service Ping does not track frontend events things like page views, link clicks, or user sessions, and only focuses on aggregated backend events.
- Because of these limitations we recommend instrumenting your products with Snowplow for more detailed analytics on GitLab.com and use Service Ping to track aggregated backend events on self-managed.
The following example shows a basic request/response flow between a GitLab instance, the Versions Application, the License Application, Salesforce, the GitLab S3 Bucket, the GitLab Snowflake Data Warehouse, and Sisense:
```mermaid
sequenceDiagram
participant GitLab Instance
participant Versions Application
participant Licenses Application
participant Salesforce
participant S3 Bucket
participant Snowflake DW
participant Sisense Dashboards
GitLab Instance->>Versions Application: Send Service Ping
loop Process usage data
Versions Application->>Versions Application: Parse usage data
Versions Application->>Versions Application: Write to database
Versions Application->>Versions Application: Update license ping time
end
loop Process data for Salesforce
Versions Application-xLicenses Application: Request Zuora subscription id
Licenses Application-xVersions Application: Zuora subscription id
Versions Application-xSalesforce: Request Zuora account id by Zuora subscription id
Salesforce-xVersions Application: Zuora account id
Versions Application-xSalesforce: Usage data for the Zuora account
1. The Service Ping [cron job](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/workers/gitlab_service_ping_worker.rb#L24) is set in Sidekiq to run weekly.
1. When the cron job runs, it calls [`Gitlab::UsageData.to_json`](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/services/service_ping/submit_service.rb#L49).
1.`Gitlab::UsageData.to_json` [cascades down](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data.rb) to ~400+ other counter method calls.
1. The response of all methods calls are [merged together](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data.rb#L68) into a single JSON payload in `Gitlab::UsageData.to_json`.
1. The JSON payload is then [posted to the Versions application](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/services/service_ping/submit_service.rb#L20)
We also collect metrics specific to [Geo](../../administration/geo/index.md) secondary sites to send with Service Ping.
1. The [Geo secondary service ping cron job](https://gitlab.com/gitlab-org/gitlab/-/blob/master/ee/app/workers/geo/secondary_usage_data_cron_worker.rb) is set in Sidekiq to run weekly.
1. When the cron job runs, it calls [`SecondaryUsageData.update_metrics!`](https://gitlab.com/gitlab-org/gitlab/-/blob/master/ee/app/models/geo/secondary_usage_data.rb#L33). This collects the relevant metrics from Prometheus and stores the data in the Geo secondary tracking database for transmission to the primary site during a [Geo node status update](https://gitlab.com/gitlab-org/gitlab/-/blob/master/ee/app/models/geo_node_status.rb#L105).
1. Geo node status data is sent with the JSON payload in the process described above. The following is an example of the payload where each object in the array represents a Geo node:
In GitLab 13.5, `pg_system_id` was added to send the [PostgreSQL system identifier](https://www.2ndquadrant.com/en/blog/support-for-postgresqls-system-identifier-in-barman/).