info: To determine the technical writer assigned to the Stage/Group associated with this page, see https://about.gitlab.com/handbook/engineering/ux/technical-writing/#designated-technical-writers
- GitLab sends a weekly payload containing usage data to GitLab Inc. Usage Ping provides high-level data to help our product, support, and sales teams. It does not send any project names, usernames, or any other specific data. The information from the usage ping is not anonymous, it is linked to the hostname of the instance. Sending usage ping is optional, and any instance can disable analytics.
- The usage data is primarily composed of row counts for different tables in the instance’s database. By comparing these counts month over month (or week over week), we can get a rough sense for how an instance is using the different features within the product. In addition to counts, other facts
that help us classify and understand GitLab installations are collected.
- Usage ping is important to GitLab as we use it to calculate our Stage Monthly Active Users (SMAU) which helps us measure the success of our stages and features.
- Once usage ping is enabled, GitLab will gather data from the other instances and will be able to show usage statistics of your instance to your users.
- The main purpose of Usage Ping is to build a better GitLab. Data about how GitLab is used is collected to better understand feature/stage adoption and usage, which helps us understand how GitLab is adding value and helps our team better understand the reasons why people use GitLab and with this knowledge we're able to make better product decisions.
- As a benefit of having the usage ping active, GitLab lets you analyze the users’ activities over time of your GitLab installation.
- As a benefit of having the usage ping active, GitLab provides you with The DevOps Score,which gives you an overview of your entire instance’s adoption of Concurrent DevOps from planning to monitoring.
- You will get better, more proactive support. (assuming that our TAMs and support organization used the data to deliver more value)
- You will get insight and advice into how to get the most value out of your investment in GitLab. Wouldn't you want to know that a number of features or values are not being adopted in your organization?
- You get a report that illustrates how you compare against other similar organizations (anonymized), with specific advice and recommendations on how to improve your DevOps processes.
- Because of these limitations we recommend instrumenting your products with Snowplow for more detailed analytics on GitLab.com and use Usage Ping to track aggregated backend events on self-managed.
## Usage Ping payload
You can view the exact JSON payload sent to GitLab Inc. in the administration panel. To view the payload:
To disable Usage Ping and prevent it from being configured in the future through the administration panel, Omnibus installs can set the following in [`gitlab.rb`](https://docs.gitlab.com/omnibus/settings/configuration.html#configuration-options):
The following example shows a basic request/response flow between a GitLab instance, the Versions Application, the License Application, Salesforce, GitLab's S3 Bucket, GitLab's Snowflake Data Warehouse, and Sisense:
Snowflake DW->>Snowflake DW: Transform data using dbt
Snowflake DW->>Sisense Dashboards: Data available for querying
Versions Application->>GitLab Instance: DevOps Score (Conversational Development Index)
```
## How Usage Ping works
1. The Usage Ping [cron job](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/workers/gitlab_usage_ping_worker.rb#L30) is set in Sidekiq to run weekly.
1. When the cron job runs, it calls [`GitLab::UsageData.to_json`](https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/services/submit_usage_ping_service.rb#L22).
1.`GitLab::UsageData.to_json` [cascades down](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data.rb#L22) to ~400+ other counter method calls.
1. The response of all methods calls are [merged together](https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/usage_data.rb#L14) into a single JSON payload in `GitLab::UsageData.to_json`.
1. The JSON payload is then [posted to the Versions application]( https://gitlab.com/gitlab-org/gitlab/-/blob/master/app/services/submit_usage_ping_service.rb#L20).
- **Ordinary Batch Counters:** Simple count of a given ActiveRecord_Relation
- **Distinct Batch Counters:** Distinct count of a given ActiveRecord_Relation on given column
- **Alternative Counters:** Used for settings and configurations
- **Redis Counters:** Used for in-memory counts. This method is being deprecated due to data inaccuracies and will be replaced with a persistent method.
Only use the provided counter methods. Each counter method contains a built in fail safe to isolate each counter to avoid breaking the entire Usage Ping.
For large tables, PostgreSQL can take a long time to count rows due to MVCC [(Multi-version Concurrency Control)](https://en.wikipedia.org/wiki/Multiversion_concurrency_control). Batch counting is a counting method where a single large query is broken into multiple smaller queries. For example, instead of a single query querying 1,000,000 records, with batch counting, you can execute 100 queries of 10,000 records each. Batch counting is useful for avoiding database timeouts as each batch query is significantly shorter than one single long running query.
For GitLab.com, there are extremely large tables with 15 second query timeouts, so we use batch counting to avoid encountering timeouts. Here are the sizes of some GitLab.com tables:
There are two batch counting methods provided, `Ordinary Batch Counters` and `Distinct Batch Counters`. Batch counting requires indexes on columns to calculate max, min, and range queries. In some cases, a specialized index may need to be added on the columns involved in a counter.
Note that Redis counters are in the [process of being deprecated](https://gitlab.com/gitlab-org/gitlab/-/issues/216330) and you should instead try to use Snowplow events instead. We're in the process of building [self-managed event tracking](https://gitlab.com/gitlab-org/telemetry/-/issues/373) and once this is available, we will convert all Redis counters into Snowplow events.
### Alternative Counters
Handles `StandardError` and fallbacks into -1 this way not all measures fail if we encounter one exception.
(15.3ms) SELECT MIN("users"."id") FROM "users" WHERE ("users"."state" IN ('active')) AND ("users"."user_type" IS NULL OR "users"."user_type" IN (6, 4))
(2.4ms) SELECT MAX("users"."id") FROM "users" WHERE ("users"."state" IN ('active')) AND ("users"."user_type" IS NULL OR "users"."user_type" IN (6, 4))
(1.9ms) SELECT COUNT("users"."id") FROM "users" WHERE ("users"."state" IN ('active')) AND ("users"."user_type" IS NULL OR "users"."user_type" IN (6, 4)) AND "users"."id" BETWEEN 1 AND 100000
We also use `#database-lab` and [explain.depesz.com](https://explain.depesz.com/). For more details, see the [database review guide](../database_review.md#preparation-when-adding-or-modifying-queries).
When adding, changing, or updating metrics, please update the [Usage Statistics definition table](#usage-statistics-definitions).
### 5. Add new metric to Versions Application
Check if new metrics need to be added to the Versions Application. See `usage_data` [schema](https://gitlab.com/gitlab-services/version-gitlab-com/-/blob/master/db/schema.rb#L147) and usage data [parameters accepted](https://gitlab.com/gitlab-services/version-gitlab-com/-/blob/master/app/services/usage_ping.rb). Any metrics added under the `counts` key are saved in the `counts` column.
### 6. Ask for a Telemetry Review
On GitLab.com, we have DangerBot setup to monitor Telemetry related files and DangerBot will recommend a Telemetry review. Mention `@gitlab-org/growth/telemetry/engineers` in your MR for a review.
### Optional: Test Prometheus based Usage Ping
If the data submitted includes metrics [queried from Prometheus](#prometheus-queries) that you would like to inspect and verify,
then you need to ensure that a Prometheus server is running locally, and that furthermore the respective GitLab components
are exporting metrics to it. If you do not need to test data coming from Prometheus, no further action
is necessary, since Usage Ping should degrade gracefully in the absence of a running Prometheus server.
There are currently three kinds of components that may export data to Prometheus, and which are included in Usage Ping:
- [`node_exporter`](https://github.com/prometheus/node_exporter) - Exports node metrics from the host machine
- [`gitlab-exporter`](https://gitlab.com/gitlab-org/gitlab-exporter) - Exports process metrics from various GitLab components
- various GitLab services such as Sidekiq and the Rails server that export their own metrics
#### Test with an Omnibus container
This is the recommended approach to test Prometheus based Usage Ping.
The easiest way to verify your changes is to build a new Omnibus image from your code branch via CI, then download the image
and run a local container instance:
1. From your merge request, click on the `qa` stage, then trigger the `package-and-qa` job. This job will trigger an Omnibus
build in a [downstream pipeline of the `omnibus-gitlab-mirror` project](https://gitlab.com/gitlab-org/build/omnibus-gitlab-mirror/-/pipelines).
1. In the downstream pipeline, wait for the `gitlab-docker` job to finish.
1. Open the job logs and locate the full container name including the version. It will take the following form: `registry.gitlab.com/gitlab-org/build/omnibus-gitlab-mirror/gitlab-ee:<VERSION>`.
1. On your local machine, make sure you are logged in to the GitLab Docker registry. You can find the instructions for this in
[Authenticating to the GitLab Container Registry](../../user/packages/container_registry/index.md#authenticating-to-the-gitlab-container-registry).
1. Once logged in, download the new image via `docker pull registry.gitlab.com/gitlab-org/build/omnibus-gitlab-mirror/gitlab-ee:<VERSION>`
1. For more information about working with and running Omnibus GitLab containers in Docker, please refer to [GitLab Docker images](https://docs.gitlab.com/omnibus/docker/README.html) in the Omnibus documentation.
#### Test with GitLab development toolkits
This is the less recommended approach, since it comes with a number of difficulties when emulating a real GitLab deployment.
The [GDK](https://gitlab.com/gitlab-org/gitlab-development-kit) is not currently set up to run a Prometheus server or `node_exporter` alongside other GitLab components. If you would
like to do so, [Monitoring the GDK with Prometheus](https://gitlab.com/gitlab-org/gitlab-development-kit/-/blob/master/doc/howto/prometheus/index.md#monitoring-the-gdk-with-prometheus) is a good start.
The [GCK](https://gitlab.com/gitlab-org/gitlab-compose-kit) has limited support for testing Prometheus based Usage Ping.
By default, it already comes with a fully configured Prometheus service that is set up to scrape a number of components,
but with the following limitations:
- It does not currently run a `gitlab-exporter` instance, so several `process_*` metrics from services such as Gitaly may be missing.
- While it runs a `node_exporter`, `docker-compose` services emulate hosts, meaning that it would normally report itself to not be associated
with any of the other services that are running. That is not how node metrics are reported in a production setup, where `node_exporter`
always runs as a process alongside other GitLab components on any given node. From Usage Ping's perspective none of the node data would therefore
appear to be associated to any of the services running, since they all appear to be running on different hosts. To alleviate this problem, the `node_exporter` in GCK was arbitrarily "assigned" to the `web` service, meaning only for this service `node_*` metrics will appear in Usage Ping.