It combines [feature driven development](https://en.wikipedia.org/wiki/Feature-driven_development) and [feature branches](http://martinfowler.com/bliki/FeatureBranch.html) with issue tracking.
Frequently the reaction to this problem is to adopt a standardized pattern such as [git flow](http://nvie.com/posts/a-successful-git-branching-model/) and [GitHub flow](http://scottchacon.com/2011/08/31/github-flow.html).
This flow has only feature branches and a master branch.
This is very simple and clean, many organizations have adopted it with great success.
Atlassian recommends [a similar strategy](http://blogs.atlassian.com/2014/01/simple-git-workflow-simple/) although they rebase feature branches.
Merging everything into the master branch and deploying often means you minimize the amount of code in 'inventory' which is in line with the lean and continuous delivery best practices.
But this flow still leaves a lot of questions unanswered regarding deployments, environments, releases and integrations with issues.
With GitLab flow we offer additional guidance for these questions.
## Production branch with GitLab flow
![Master branch and production branch with arrow that indicate deployments](production_branch.png)
GitHub flow does assume you are able to deploy to production every time you merge a feature branch.
One would be a situation where you are not in control of the exact release moment, for example an iOS application that needs to pass App Store validation.
Another example is when you have deployment windows (workdays from 10am to 4pm when the operations team is at full capacity) but you also merge code at other times.
In these cases you can make a production branch that reflects the deployed code.
You can deploy a new version by merging in master to the production branch.
If you need to know what code is in production you can just checkout the production branch to see.
The approximate time of deployment is easily visible as the merge commit in the version control system.
This time is pretty accurate if you automatically deploy your production branch.
If you need a more exact time you can have your deployment script create a tag on each deployment.
This flow prevents the overhead of releasing, tagging and merging that is common to git flow.
## Environment branches with GitLab flow
![Multiple branches with the code cascading from one to another](environment_branches.png)
It might be a good idea to have an environment that is automatically updated to the master branch.
Only in this case, the name of this environment might differ from the branch name.
Suppose you have a staging environment, a pre-production environment and a production environment.
In this case the master branch is deployed on staging. When someone wants to deploy to pre-production they create a merge request from the master branch to the pre-production branch.
And going live with code happens by merging the pre-production branch into the production branch.
This workflow where commits only flow downstream ensures that everything has been tested on all environments.
If you need to cherry-pick a commit with a hotfix it is common to develop it on a feature branch and merge it into master with a merge request, do not delete the feature branch.
If master is good to go (it should be if you are practicing [continuous delivery](http://martinfowler.com/bliki/ContinuousDelivery.html)) you then merge it to the other branches.
This is called an 'upstream first' policy that is also practiced by [Google](https://www.chromium.org/chromium-os/chromiumos-design-docs/upstream-first) and [Red Hat](https://www.redhat.com/about/news/archive/2013/5/a-community-for-using-openstack-with-red-hat-rdo).
Every time a bug-fix is included in a release branch the patch version is raised (to comply with [Semantic Versioning](http://semver.org/)) by setting a new tag.
Some projects also have a stable branch that points to the same commit as the latest released branch.
In this flow it is not common to have a production branch (or git flow master branch).
## Merge/pull requests with GitLab flow
![Merge request with line comments](mr_inline_comments.png)
Merge or pull requests are created in a git management application and ask an assigned person to merge two branches.
Tools such as GitHub and Bitbucket choose the name pull request since the first manual action would be to pull the feature branch.
In this article we'll refer to them as merge requests.
If you work on a feature branch for more than a few hours it is good to share the intermediate result with the rest of the team.
This can be done by creating a merge request without assigning it to anyone, instead you mention people in the description or a comment (/cc @mark@susan).
This means it is not ready to be merged but feedback is welcome.
Your team members can comment on the merge request in general or on specific lines with line comments.
The merge requests serves as a code review tool and no separate tools such as Gerrit and reviewboard should be needed.
If the review reveals shortcomings anyone can commit and push a fix.
Commonly the person to do this is the creator of the merge/pull request.
The diff in the merge/pull requests automatically updates when new commits are pushed on the branch.
When you feel comfortable with it to be merged you assign it to the person that knows most about the codebase you are changing and mention any other people you would like feedback from.
There is room for more feedback and after the assigned person feels comfortable with the result the branch is merged.
If the assigned person does not feel comfortable they can close the merge request without merging.
In GitLab it is common to protect the long-lived branches (e.g. the master branch) so that normal developers [can't modify these protected branches](http://docs.gitlab.com/ce/permissions/permissions.html).
![Merge request with the branch name 15-require-a-password-to-change-it and assignee field shown](merge_request.png)
GitLab flow is a way to make the relation between the code and the issue tracker more transparent.
Any significant change to the code should start with an issue where the goal is described.
Having a reason for every code change is important to inform everyone on the team and to help people keep the scope of a feature branch small.
In GitLab each change to the codebase starts with an issue in the issue tracking system.
If there is no issue yet it should be created first provided there is significant work involved (more than 1 hour).
For many organizations this will be natural since the issue will have to be estimated for the sprint.
Issue titles should describe the desired state of the system, e.g. "As an administrator I want to remove users without receiving an error" instead of "Admin can't remove users.".
When you are ready to code you start a branch for the issue from the master branch.
The name of this branch should start with the issue number, for example '15-require-a-password-to-change-it'.
When you are done or want to discuss the code you open a merge request.
This is an online place to discuss the change and review the code.
Opening a merge request is a manual action since you do not always want to merge a new branch you push, it could be a long-running environment or release branch.
If you open the merge request but do not assign it to anyone it is a 'Work In Progress' merge request.
These issues are closed once code is merged into the default branch.
If you only want to make the reference without closing the issue you can also just mention it: "Duck typing is preferred. #12".
If you have an issue that spans across multiple repositories, the best thing is to create an issue for each repository and link all issues to a parent issue.
This functionality is useful if you made a couple of commits for small changes during development and want to replace them with a single commit or if you want to make the order more logical.
However you should never rebase commits you have pushed to a remote server.
Somebody can have referred to the commits or cherry-picked them.
When you rebase you change the identifier (SHA-1) of the commit and this is confusing.
If you do that the same change will be known under multiple identifiers and this can cause much confusion.
If people already reviewed your code it will be hard for them to review only the improvements you made since then if you have rebased everything into one commit.
Another reasons not to rebase is that you lose authorship information, maybe someone created a merge request, another person pushed a commit on there to improve it and a third one merged it.
In this case rebasing all the commits into one prevent the other authors from being properly attributed and sharing part of the [git blame](https://git-scm.com/docs/git-blame).
People are encouraged to commit often and to frequently push to the remote repository so other people are aware what everyone is working on.
This will lead to many commits per change which makes the history harder to understand.
But the advantages of having stable identifiers outweigh this drawback.
And to understand a change in context one can always look at the merge commit that groups all the commits together when the code is merged into the master branch.
After you merge multiple commits from a feature branch into the master branch this is harder to undo.
If you had squashed all the commits into one you could have just reverted this commit but as we indicated you should not rebase commits after they are pushed.
This however, requires having specific merge commits for the commits your want to revert.
If you revert a merge and you change your mind, revert the revert instead of merging again since git will not allow you to merge the code again otherwise.
Being able to revert a merge is a good reason always to create a merge commit when you merge manually with the `--no-ff` option.
Git management software will always create a merge commit when you accept a merge request.
## Do not order commits with rebase
![List of sequential merge commits](merge_commits.png)
With git you can also rebase your feature branch commits to order them after the commits on the master branch.
This prevents creating a merge commit when merging master into your feature branch and creates a nice linear history.
However, just like with squashing you should never rebase commits you have pushed to a remote server.
This makes it impossible to rebase work in progress that you already shared with your team which is something we recommend.
When using rebase to keep your feature branch updated you [need to resolve similar conflicts again and again](https://blogs.atlassian.com/2013/10/git-team-workflows-merge-or-rebase/).
If you need to leverage some code that was introduced in master after you created the feature branch you can sometimes solve this by just cherry-picking a commit.
If your feature branch has a merge conflict, creating a merge commit is a normal way of solving this.
The last reason for creating merge commits is having long lived branches that you want to keep up to date with the latest state of the project.
Martin Fowler, in [his article about feature branches](http://martinfowler.com/bliki/FeatureBranch.html) talks about this Continuous Integration (CI).
At GitLab we are guilty of confusing CI with branch testing. Quoting Martin Fowler: "I've heard people say they are doing CI because they are running builds, perhaps using a CI server, on every branch with every commit.
That's continuous building, and a Good Thing, but there's no integration, so it's not CI.".
The solution to prevent many merge commits is to keep your feature branches short-lived, the vast majority should take less than one day of work.
If your feature branches commonly take more than a day of work, look into ways to create smaller units of work and/or use [feature toggles](http://martinfowler.com/bliki/FeatureToggle.html).
As for the long running branches that take more than one day there are two strategies.
In a CI strategy you can merge in master at the start of the day to prevent painful merges at a later time.
In a synchronization point strategy you only merge in from well defined points in time, for example a tagged release.
This strategy is [advocated by Linus Torvalds](https://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html) because the state of the code at these points is better known.
In conclusion, we can say that you should try to prevent merge commits, but not eliminate them.
Your codebase should be clean but your history should represent what actually happened.
Developing software happen in small messy steps and it is OK to have your history reflect this.
You can use tools to view the network graphs of commits and understand the messy history that created your code.
If you rebase code the history is incorrect, and there is no way for tools to remedy this because they can't deal with changing commit identifiers.
The word fix or fixes is also a red flag, unless it comes after the commit sentence and references an issue number.
To see more information about the formatting of commit messages please see this great [blog post by Tim Pope](http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html).
## Testing before merging
![Merge requests showing the test states, red, yellow and green](ci_mr.png)
In old workflows the Continuous Integration (CI) server commonly ran tests on the master branch only.
Developers had to ensure their code did not break the master branch.
When using GitLab flow developers create their branches from this master branch so it is essential it is green.
Therefore each merge request must be tested before it is accepted.
CI software like Travis and GitLab CI show the build results right in the merge request itself to make this easy.
One drawback is that they are testing the feature branch itself and not the merged result.
What one can do to improve this is to test the merged result itself.
The problem is that the merge result changes every time something is merged into master.
Retesting on every commit to master is computationally expensive and means you are more frequently waiting for test results.
If there are no merge conflicts and the feature branches are short lived the risk is acceptable.
If there are merge conflicts you merge the master branch into the feature branch and the CI server will rerun the tests.
If you have long lived feature branches that last for more than a few days you should make your issues smaller.
Do not merge in upstream if your code will work and merge cleanly without doing so, Linus even says that [you should never merge in upstream at random points, only at major releases](https://lwn.net/Articles/328438/).