249 lines
5.2 KiB
Go
249 lines
5.2 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package bn256
|
|
|
|
import (
|
|
"math/big"
|
|
)
|
|
|
|
// twistPoint implements the elliptic curve y²=x³+3/ξ over GF(p²). Points are
|
|
// kept in Jacobian form and t=z² when valid. The group G₂ is the set of
|
|
// n-torsion points of this curve over GF(p²) (where n = Order)
|
|
type twistPoint struct {
|
|
x, y, z, t *gfP2
|
|
}
|
|
|
|
var twistB = &gfP2{
|
|
bigFromBase10("6500054969564660373279643874235990574282535810762300357187714502686418407178"),
|
|
bigFromBase10("45500384786952622612957507119651934019977750675336102500314001518804928850249"),
|
|
}
|
|
|
|
// twistGen is the generator of group G₂.
|
|
var twistGen = &twistPoint{
|
|
&gfP2{
|
|
bigFromBase10("21167961636542580255011770066570541300993051739349375019639421053990175267184"),
|
|
bigFromBase10("64746500191241794695844075326670126197795977525365406531717464316923369116492"),
|
|
},
|
|
&gfP2{
|
|
bigFromBase10("20666913350058776956210519119118544732556678129809273996262322366050359951122"),
|
|
bigFromBase10("17778617556404439934652658462602675281523610326338642107814333856843981424549"),
|
|
},
|
|
&gfP2{
|
|
bigFromBase10("0"),
|
|
bigFromBase10("1"),
|
|
},
|
|
&gfP2{
|
|
bigFromBase10("0"),
|
|
bigFromBase10("1"),
|
|
},
|
|
}
|
|
|
|
func newTwistPoint(pool *bnPool) *twistPoint {
|
|
return &twistPoint{
|
|
newGFp2(pool),
|
|
newGFp2(pool),
|
|
newGFp2(pool),
|
|
newGFp2(pool),
|
|
}
|
|
}
|
|
|
|
func (c *twistPoint) String() string {
|
|
return "(" + c.x.String() + ", " + c.y.String() + ", " + c.z.String() + ")"
|
|
}
|
|
|
|
func (c *twistPoint) Put(pool *bnPool) {
|
|
c.x.Put(pool)
|
|
c.y.Put(pool)
|
|
c.z.Put(pool)
|
|
c.t.Put(pool)
|
|
}
|
|
|
|
func (c *twistPoint) Set(a *twistPoint) {
|
|
c.x.Set(a.x)
|
|
c.y.Set(a.y)
|
|
c.z.Set(a.z)
|
|
c.t.Set(a.t)
|
|
}
|
|
|
|
// IsOnCurve returns true iff c is on the curve where c must be in affine form.
|
|
func (c *twistPoint) IsOnCurve() bool {
|
|
pool := new(bnPool)
|
|
yy := newGFp2(pool).Square(c.y, pool)
|
|
xxx := newGFp2(pool).Square(c.x, pool)
|
|
xxx.Mul(xxx, c.x, pool)
|
|
yy.Sub(yy, xxx)
|
|
yy.Sub(yy, twistB)
|
|
yy.Minimal()
|
|
return yy.x.Sign() == 0 && yy.y.Sign() == 0
|
|
}
|
|
|
|
func (c *twistPoint) SetInfinity() {
|
|
c.z.SetZero()
|
|
}
|
|
|
|
func (c *twistPoint) IsInfinity() bool {
|
|
return c.z.IsZero()
|
|
}
|
|
|
|
func (c *twistPoint) Add(a, b *twistPoint, pool *bnPool) {
|
|
// For additional comments, see the same function in curve.go.
|
|
|
|
if a.IsInfinity() {
|
|
c.Set(b)
|
|
return
|
|
}
|
|
if b.IsInfinity() {
|
|
c.Set(a)
|
|
return
|
|
}
|
|
|
|
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3
|
|
z1z1 := newGFp2(pool).Square(a.z, pool)
|
|
z2z2 := newGFp2(pool).Square(b.z, pool)
|
|
u1 := newGFp2(pool).Mul(a.x, z2z2, pool)
|
|
u2 := newGFp2(pool).Mul(b.x, z1z1, pool)
|
|
|
|
t := newGFp2(pool).Mul(b.z, z2z2, pool)
|
|
s1 := newGFp2(pool).Mul(a.y, t, pool)
|
|
|
|
t.Mul(a.z, z1z1, pool)
|
|
s2 := newGFp2(pool).Mul(b.y, t, pool)
|
|
|
|
h := newGFp2(pool).Sub(u2, u1)
|
|
xEqual := h.IsZero()
|
|
|
|
t.Add(h, h)
|
|
i := newGFp2(pool).Square(t, pool)
|
|
j := newGFp2(pool).Mul(h, i, pool)
|
|
|
|
t.Sub(s2, s1)
|
|
yEqual := t.IsZero()
|
|
if xEqual && yEqual {
|
|
c.Double(a, pool)
|
|
return
|
|
}
|
|
r := newGFp2(pool).Add(t, t)
|
|
|
|
v := newGFp2(pool).Mul(u1, i, pool)
|
|
|
|
t4 := newGFp2(pool).Square(r, pool)
|
|
t.Add(v, v)
|
|
t6 := newGFp2(pool).Sub(t4, j)
|
|
c.x.Sub(t6, t)
|
|
|
|
t.Sub(v, c.x) // t7
|
|
t4.Mul(s1, j, pool) // t8
|
|
t6.Add(t4, t4) // t9
|
|
t4.Mul(r, t, pool) // t10
|
|
c.y.Sub(t4, t6)
|
|
|
|
t.Add(a.z, b.z) // t11
|
|
t4.Square(t, pool) // t12
|
|
t.Sub(t4, z1z1) // t13
|
|
t4.Sub(t, z2z2) // t14
|
|
c.z.Mul(t4, h, pool)
|
|
|
|
z1z1.Put(pool)
|
|
z2z2.Put(pool)
|
|
u1.Put(pool)
|
|
u2.Put(pool)
|
|
t.Put(pool)
|
|
s1.Put(pool)
|
|
s2.Put(pool)
|
|
h.Put(pool)
|
|
i.Put(pool)
|
|
j.Put(pool)
|
|
r.Put(pool)
|
|
v.Put(pool)
|
|
t4.Put(pool)
|
|
t6.Put(pool)
|
|
}
|
|
|
|
func (c *twistPoint) Double(a *twistPoint, pool *bnPool) {
|
|
// See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3
|
|
A := newGFp2(pool).Square(a.x, pool)
|
|
B := newGFp2(pool).Square(a.y, pool)
|
|
C := newGFp2(pool).Square(B, pool)
|
|
|
|
t := newGFp2(pool).Add(a.x, B)
|
|
t2 := newGFp2(pool).Square(t, pool)
|
|
t.Sub(t2, A)
|
|
t2.Sub(t, C)
|
|
d := newGFp2(pool).Add(t2, t2)
|
|
t.Add(A, A)
|
|
e := newGFp2(pool).Add(t, A)
|
|
f := newGFp2(pool).Square(e, pool)
|
|
|
|
t.Add(d, d)
|
|
c.x.Sub(f, t)
|
|
|
|
t.Add(C, C)
|
|
t2.Add(t, t)
|
|
t.Add(t2, t2)
|
|
c.y.Sub(d, c.x)
|
|
t2.Mul(e, c.y, pool)
|
|
c.y.Sub(t2, t)
|
|
|
|
t.Mul(a.y, a.z, pool)
|
|
c.z.Add(t, t)
|
|
|
|
A.Put(pool)
|
|
B.Put(pool)
|
|
C.Put(pool)
|
|
t.Put(pool)
|
|
t2.Put(pool)
|
|
d.Put(pool)
|
|
e.Put(pool)
|
|
f.Put(pool)
|
|
}
|
|
|
|
func (c *twistPoint) Mul(a *twistPoint, scalar *big.Int, pool *bnPool) *twistPoint {
|
|
sum := newTwistPoint(pool)
|
|
sum.SetInfinity()
|
|
t := newTwistPoint(pool)
|
|
|
|
for i := scalar.BitLen(); i >= 0; i-- {
|
|
t.Double(sum, pool)
|
|
if scalar.Bit(i) != 0 {
|
|
sum.Add(t, a, pool)
|
|
} else {
|
|
sum.Set(t)
|
|
}
|
|
}
|
|
|
|
c.Set(sum)
|
|
sum.Put(pool)
|
|
t.Put(pool)
|
|
return c
|
|
}
|
|
|
|
func (c *twistPoint) MakeAffine(pool *bnPool) *twistPoint {
|
|
if c.z.IsOne() {
|
|
return c
|
|
}
|
|
|
|
zInv := newGFp2(pool).Invert(c.z, pool)
|
|
t := newGFp2(pool).Mul(c.y, zInv, pool)
|
|
zInv2 := newGFp2(pool).Square(zInv, pool)
|
|
c.y.Mul(t, zInv2, pool)
|
|
t.Mul(c.x, zInv2, pool)
|
|
c.x.Set(t)
|
|
c.z.SetOne()
|
|
c.t.SetOne()
|
|
|
|
zInv.Put(pool)
|
|
t.Put(pool)
|
|
zInv2.Put(pool)
|
|
|
|
return c
|
|
}
|
|
|
|
func (c *twistPoint) Negative(a *twistPoint, pool *bnPool) {
|
|
c.x.Set(a.x)
|
|
c.y.SetZero()
|
|
c.y.Sub(c.y, a.y)
|
|
c.z.Set(a.z)
|
|
c.t.SetZero()
|
|
}
|