695 lines
19 KiB
Go
695 lines
19 KiB
Go
|
// Package prediction provides access to the Prediction API.
|
||
|
//
|
||
|
// See https://developers.google.com/prediction/docs/developer-guide
|
||
|
//
|
||
|
// Usage example:
|
||
|
//
|
||
|
// import "google.golang.org/api/prediction/v1.3"
|
||
|
// ...
|
||
|
// predictionService, err := prediction.New(oauthHttpClient)
|
||
|
package prediction
|
||
|
|
||
|
import (
|
||
|
"bytes"
|
||
|
"encoding/json"
|
||
|
"errors"
|
||
|
"fmt"
|
||
|
"google.golang.org/api/googleapi"
|
||
|
"io"
|
||
|
"net/http"
|
||
|
"net/url"
|
||
|
"strconv"
|
||
|
"strings"
|
||
|
)
|
||
|
|
||
|
// Always reference these packages, just in case the auto-generated code
|
||
|
// below doesn't.
|
||
|
var _ = bytes.NewBuffer
|
||
|
var _ = strconv.Itoa
|
||
|
var _ = fmt.Sprintf
|
||
|
var _ = json.NewDecoder
|
||
|
var _ = io.Copy
|
||
|
var _ = url.Parse
|
||
|
var _ = googleapi.Version
|
||
|
var _ = errors.New
|
||
|
var _ = strings.Replace
|
||
|
|
||
|
const apiId = "prediction:v1.3"
|
||
|
const apiName = "prediction"
|
||
|
const apiVersion = "v1.3"
|
||
|
const basePath = "https://www.googleapis.com/prediction/v1.3/"
|
||
|
|
||
|
// OAuth2 scopes used by this API.
|
||
|
const (
|
||
|
// Manage your data and permissions in Google Cloud Storage
|
||
|
DevstorageFull_controlScope = "https://www.googleapis.com/auth/devstorage.full_control"
|
||
|
|
||
|
// View your data in Google Cloud Storage
|
||
|
DevstorageRead_onlyScope = "https://www.googleapis.com/auth/devstorage.read_only"
|
||
|
|
||
|
// Manage your data in Google Cloud Storage
|
||
|
DevstorageRead_writeScope = "https://www.googleapis.com/auth/devstorage.read_write"
|
||
|
|
||
|
// Manage your data in the Google Prediction API
|
||
|
PredictionScope = "https://www.googleapis.com/auth/prediction"
|
||
|
)
|
||
|
|
||
|
func New(client *http.Client) (*Service, error) {
|
||
|
if client == nil {
|
||
|
return nil, errors.New("client is nil")
|
||
|
}
|
||
|
s := &Service{client: client, BasePath: basePath}
|
||
|
s.Hostedmodels = NewHostedmodelsService(s)
|
||
|
s.Training = NewTrainingService(s)
|
||
|
return s, nil
|
||
|
}
|
||
|
|
||
|
type Service struct {
|
||
|
client *http.Client
|
||
|
BasePath string // API endpoint base URL
|
||
|
|
||
|
Hostedmodels *HostedmodelsService
|
||
|
|
||
|
Training *TrainingService
|
||
|
}
|
||
|
|
||
|
func NewHostedmodelsService(s *Service) *HostedmodelsService {
|
||
|
rs := &HostedmodelsService{s: s}
|
||
|
return rs
|
||
|
}
|
||
|
|
||
|
type HostedmodelsService struct {
|
||
|
s *Service
|
||
|
}
|
||
|
|
||
|
func NewTrainingService(s *Service) *TrainingService {
|
||
|
rs := &TrainingService{s: s}
|
||
|
return rs
|
||
|
}
|
||
|
|
||
|
type TrainingService struct {
|
||
|
s *Service
|
||
|
}
|
||
|
|
||
|
type Input struct {
|
||
|
// Input: Input to the model for a prediction
|
||
|
Input *InputInput `json:"input,omitempty"`
|
||
|
}
|
||
|
|
||
|
type InputInput struct {
|
||
|
// CsvInstance: A list of input features, these can be strings or
|
||
|
// doubles.
|
||
|
CsvInstance []interface{} `json:"csvInstance,omitempty"`
|
||
|
}
|
||
|
|
||
|
type Output struct {
|
||
|
// Id: The unique name for the predictive model.
|
||
|
Id string `json:"id,omitempty"`
|
||
|
|
||
|
// Kind: What kind of resource this is.
|
||
|
Kind string `json:"kind,omitempty"`
|
||
|
|
||
|
// OutputLabel: The most likely class [Categorical models only].
|
||
|
OutputLabel string `json:"outputLabel,omitempty"`
|
||
|
|
||
|
// OutputMulti: A list of classes with their estimated probabilities
|
||
|
// [Categorical models only].
|
||
|
OutputMulti []*OutputOutputMulti `json:"outputMulti,omitempty"`
|
||
|
|
||
|
// OutputValue: The estimated regression value [Regression models only].
|
||
|
OutputValue float64 `json:"outputValue,omitempty"`
|
||
|
|
||
|
// SelfLink: A URL to re-request this resource.
|
||
|
SelfLink string `json:"selfLink,omitempty"`
|
||
|
}
|
||
|
|
||
|
type OutputOutputMulti struct {
|
||
|
// Label: The class label.
|
||
|
Label string `json:"label,omitempty"`
|
||
|
|
||
|
// Score: The probability of the class.
|
||
|
Score float64 `json:"score,omitempty"`
|
||
|
}
|
||
|
|
||
|
type Training struct {
|
||
|
// Id: The unique name for the predictive model.
|
||
|
Id string `json:"id,omitempty"`
|
||
|
|
||
|
// Kind: What kind of resource this is.
|
||
|
Kind string `json:"kind,omitempty"`
|
||
|
|
||
|
// ModelInfo: Model metadata.
|
||
|
ModelInfo *TrainingModelInfo `json:"modelInfo,omitempty"`
|
||
|
|
||
|
// SelfLink: A URL to re-request this resource.
|
||
|
SelfLink string `json:"selfLink,omitempty"`
|
||
|
|
||
|
// TrainingStatus: The current status of the training job. This can be
|
||
|
// one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
|
||
|
TrainingStatus string `json:"trainingStatus,omitempty"`
|
||
|
|
||
|
// Utility: A class weighting function, which allows the importance
|
||
|
// weights for classes to be specified [Categorical models only].
|
||
|
Utility []*TrainingUtility `json:"utility,omitempty"`
|
||
|
}
|
||
|
|
||
|
type TrainingModelInfo struct {
|
||
|
// ClassWeightedAccuracy: Estimated accuracy of model taking utility
|
||
|
// weights into account [Categorical models only].
|
||
|
ClassWeightedAccuracy float64 `json:"classWeightedAccuracy,omitempty"`
|
||
|
|
||
|
// ClassificationAccuracy: A number between 0.0 and 1.0, where 1.0 is
|
||
|
// 100% accurate. This is an estimate, based on the amount and quality
|
||
|
// of the training data, of the estimated prediction accuracy. You can
|
||
|
// use this is a guide to decide whether the results are accurate enough
|
||
|
// for your needs. This estimate will be more reliable if your real
|
||
|
// input data is similar to your training data [Categorical models
|
||
|
// only].
|
||
|
ClassificationAccuracy float64 `json:"classificationAccuracy,omitempty"`
|
||
|
|
||
|
// ConfusionMatrix: An output confusion matrix. This shows an estimate
|
||
|
// for how this model will do in predictions. This is first indexed by
|
||
|
// the true class label. For each true class label, this provides a pair
|
||
|
// {predicted_label, count}, where count is the estimated number of
|
||
|
// times the model will predict the predicted label given the true
|
||
|
// label. Will not output if more then 100 classes [Categorical models
|
||
|
// only].
|
||
|
ConfusionMatrix *TrainingModelInfoConfusionMatrix `json:"confusionMatrix,omitempty"`
|
||
|
|
||
|
// ConfusionMatrixRowTotals: A list of the confusion matrix row totals
|
||
|
ConfusionMatrixRowTotals *TrainingModelInfoConfusionMatrixRowTotals `json:"confusionMatrixRowTotals,omitempty"`
|
||
|
|
||
|
// MeanSquaredError: An estimated mean squared error. The can be used to
|
||
|
// measure the quality of the predicted model [Regression models only].
|
||
|
MeanSquaredError float64 `json:"meanSquaredError,omitempty"`
|
||
|
|
||
|
// ModelType: Type of predictive model (CLASSIFICATION or REGRESSION)
|
||
|
ModelType string `json:"modelType,omitempty"`
|
||
|
|
||
|
// NumberClasses: Number of classes in the trained model [Categorical
|
||
|
// models only].
|
||
|
NumberClasses int64 `json:"numberClasses,omitempty,string"`
|
||
|
|
||
|
// NumberInstances: Number of valid data instances used in the trained
|
||
|
// model.
|
||
|
NumberInstances int64 `json:"numberInstances,omitempty,string"`
|
||
|
}
|
||
|
|
||
|
type TrainingModelInfoConfusionMatrix struct {
|
||
|
}
|
||
|
|
||
|
type TrainingModelInfoConfusionMatrixRowTotals struct {
|
||
|
}
|
||
|
|
||
|
type TrainingUtility struct {
|
||
|
}
|
||
|
|
||
|
type Update struct {
|
||
|
// ClassLabel: The true class label of this instance
|
||
|
ClassLabel string `json:"classLabel,omitempty"`
|
||
|
|
||
|
// CsvInstance: The input features for this instance
|
||
|
CsvInstance []interface{} `json:"csvInstance,omitempty"`
|
||
|
}
|
||
|
|
||
|
// method id "prediction.hostedmodels.predict":
|
||
|
|
||
|
type HostedmodelsPredictCall struct {
|
||
|
s *Service
|
||
|
hostedModelName string
|
||
|
input *Input
|
||
|
opt_ map[string]interface{}
|
||
|
}
|
||
|
|
||
|
// Predict: Submit input and request an output against a hosted model
|
||
|
func (r *HostedmodelsService) Predict(hostedModelName string, input *Input) *HostedmodelsPredictCall {
|
||
|
c := &HostedmodelsPredictCall{s: r.s, opt_: make(map[string]interface{})}
|
||
|
c.hostedModelName = hostedModelName
|
||
|
c.input = input
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
// Fields allows partial responses to be retrieved.
|
||
|
// See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse
|
||
|
// for more information.
|
||
|
func (c *HostedmodelsPredictCall) Fields(s ...googleapi.Field) *HostedmodelsPredictCall {
|
||
|
c.opt_["fields"] = googleapi.CombineFields(s)
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
func (c *HostedmodelsPredictCall) Do() (*Output, error) {
|
||
|
var body io.Reader = nil
|
||
|
body, err := googleapi.WithoutDataWrapper.JSONReader(c.input)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
ctype := "application/json"
|
||
|
params := make(url.Values)
|
||
|
params.Set("alt", "json")
|
||
|
if v, ok := c.opt_["fields"]; ok {
|
||
|
params.Set("fields", fmt.Sprintf("%v", v))
|
||
|
}
|
||
|
urls := googleapi.ResolveRelative(c.s.BasePath, "hostedmodels/{hostedModelName}/predict")
|
||
|
urls += "?" + params.Encode()
|
||
|
req, _ := http.NewRequest("POST", urls, body)
|
||
|
googleapi.Expand(req.URL, map[string]string{
|
||
|
"hostedModelName": c.hostedModelName,
|
||
|
})
|
||
|
req.Header.Set("Content-Type", ctype)
|
||
|
req.Header.Set("User-Agent", "google-api-go-client/0.5")
|
||
|
res, err := c.s.client.Do(req)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
defer googleapi.CloseBody(res)
|
||
|
if err := googleapi.CheckResponse(res); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
var ret *Output
|
||
|
if err := json.NewDecoder(res.Body).Decode(&ret); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
return ret, nil
|
||
|
// {
|
||
|
// "description": "Submit input and request an output against a hosted model",
|
||
|
// "httpMethod": "POST",
|
||
|
// "id": "prediction.hostedmodels.predict",
|
||
|
// "parameterOrder": [
|
||
|
// "hostedModelName"
|
||
|
// ],
|
||
|
// "parameters": {
|
||
|
// "hostedModelName": {
|
||
|
// "description": "The name of a hosted model",
|
||
|
// "location": "path",
|
||
|
// "required": true,
|
||
|
// "type": "string"
|
||
|
// }
|
||
|
// },
|
||
|
// "path": "hostedmodels/{hostedModelName}/predict",
|
||
|
// "request": {
|
||
|
// "$ref": "Input"
|
||
|
// },
|
||
|
// "response": {
|
||
|
// "$ref": "Output"
|
||
|
// },
|
||
|
// "scopes": [
|
||
|
// "https://www.googleapis.com/auth/prediction"
|
||
|
// ]
|
||
|
// }
|
||
|
|
||
|
}
|
||
|
|
||
|
// method id "prediction.training.delete":
|
||
|
|
||
|
type TrainingDeleteCall struct {
|
||
|
s *Service
|
||
|
data string
|
||
|
opt_ map[string]interface{}
|
||
|
}
|
||
|
|
||
|
// Delete: Delete a trained model
|
||
|
func (r *TrainingService) Delete(data string) *TrainingDeleteCall {
|
||
|
c := &TrainingDeleteCall{s: r.s, opt_: make(map[string]interface{})}
|
||
|
c.data = data
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
// Fields allows partial responses to be retrieved.
|
||
|
// See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse
|
||
|
// for more information.
|
||
|
func (c *TrainingDeleteCall) Fields(s ...googleapi.Field) *TrainingDeleteCall {
|
||
|
c.opt_["fields"] = googleapi.CombineFields(s)
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
func (c *TrainingDeleteCall) Do() error {
|
||
|
var body io.Reader = nil
|
||
|
params := make(url.Values)
|
||
|
params.Set("alt", "json")
|
||
|
if v, ok := c.opt_["fields"]; ok {
|
||
|
params.Set("fields", fmt.Sprintf("%v", v))
|
||
|
}
|
||
|
urls := googleapi.ResolveRelative(c.s.BasePath, "training/{data}")
|
||
|
urls += "?" + params.Encode()
|
||
|
req, _ := http.NewRequest("DELETE", urls, body)
|
||
|
googleapi.Expand(req.URL, map[string]string{
|
||
|
"data": c.data,
|
||
|
})
|
||
|
req.Header.Set("User-Agent", "google-api-go-client/0.5")
|
||
|
res, err := c.s.client.Do(req)
|
||
|
if err != nil {
|
||
|
return err
|
||
|
}
|
||
|
defer googleapi.CloseBody(res)
|
||
|
if err := googleapi.CheckResponse(res); err != nil {
|
||
|
return err
|
||
|
}
|
||
|
return nil
|
||
|
// {
|
||
|
// "description": "Delete a trained model",
|
||
|
// "httpMethod": "DELETE",
|
||
|
// "id": "prediction.training.delete",
|
||
|
// "parameterOrder": [
|
||
|
// "data"
|
||
|
// ],
|
||
|
// "parameters": {
|
||
|
// "data": {
|
||
|
// "description": "mybucket/mydata resource in Google Storage",
|
||
|
// "location": "path",
|
||
|
// "required": true,
|
||
|
// "type": "string"
|
||
|
// }
|
||
|
// },
|
||
|
// "path": "training/{data}",
|
||
|
// "scopes": [
|
||
|
// "https://www.googleapis.com/auth/prediction"
|
||
|
// ]
|
||
|
// }
|
||
|
|
||
|
}
|
||
|
|
||
|
// method id "prediction.training.get":
|
||
|
|
||
|
type TrainingGetCall struct {
|
||
|
s *Service
|
||
|
data string
|
||
|
opt_ map[string]interface{}
|
||
|
}
|
||
|
|
||
|
// Get: Check training status of your model
|
||
|
func (r *TrainingService) Get(data string) *TrainingGetCall {
|
||
|
c := &TrainingGetCall{s: r.s, opt_: make(map[string]interface{})}
|
||
|
c.data = data
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
// Fields allows partial responses to be retrieved.
|
||
|
// See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse
|
||
|
// for more information.
|
||
|
func (c *TrainingGetCall) Fields(s ...googleapi.Field) *TrainingGetCall {
|
||
|
c.opt_["fields"] = googleapi.CombineFields(s)
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
func (c *TrainingGetCall) Do() (*Training, error) {
|
||
|
var body io.Reader = nil
|
||
|
params := make(url.Values)
|
||
|
params.Set("alt", "json")
|
||
|
if v, ok := c.opt_["fields"]; ok {
|
||
|
params.Set("fields", fmt.Sprintf("%v", v))
|
||
|
}
|
||
|
urls := googleapi.ResolveRelative(c.s.BasePath, "training/{data}")
|
||
|
urls += "?" + params.Encode()
|
||
|
req, _ := http.NewRequest("GET", urls, body)
|
||
|
googleapi.Expand(req.URL, map[string]string{
|
||
|
"data": c.data,
|
||
|
})
|
||
|
req.Header.Set("User-Agent", "google-api-go-client/0.5")
|
||
|
res, err := c.s.client.Do(req)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
defer googleapi.CloseBody(res)
|
||
|
if err := googleapi.CheckResponse(res); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
var ret *Training
|
||
|
if err := json.NewDecoder(res.Body).Decode(&ret); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
return ret, nil
|
||
|
// {
|
||
|
// "description": "Check training status of your model",
|
||
|
// "httpMethod": "GET",
|
||
|
// "id": "prediction.training.get",
|
||
|
// "parameterOrder": [
|
||
|
// "data"
|
||
|
// ],
|
||
|
// "parameters": {
|
||
|
// "data": {
|
||
|
// "description": "mybucket/mydata resource in Google Storage",
|
||
|
// "location": "path",
|
||
|
// "required": true,
|
||
|
// "type": "string"
|
||
|
// }
|
||
|
// },
|
||
|
// "path": "training/{data}",
|
||
|
// "response": {
|
||
|
// "$ref": "Training"
|
||
|
// },
|
||
|
// "scopes": [
|
||
|
// "https://www.googleapis.com/auth/prediction"
|
||
|
// ]
|
||
|
// }
|
||
|
|
||
|
}
|
||
|
|
||
|
// method id "prediction.training.insert":
|
||
|
|
||
|
type TrainingInsertCall struct {
|
||
|
s *Service
|
||
|
training *Training
|
||
|
opt_ map[string]interface{}
|
||
|
}
|
||
|
|
||
|
// Insert: Begin training your model
|
||
|
func (r *TrainingService) Insert(training *Training) *TrainingInsertCall {
|
||
|
c := &TrainingInsertCall{s: r.s, opt_: make(map[string]interface{})}
|
||
|
c.training = training
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
// Fields allows partial responses to be retrieved.
|
||
|
// See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse
|
||
|
// for more information.
|
||
|
func (c *TrainingInsertCall) Fields(s ...googleapi.Field) *TrainingInsertCall {
|
||
|
c.opt_["fields"] = googleapi.CombineFields(s)
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
func (c *TrainingInsertCall) Do() (*Training, error) {
|
||
|
var body io.Reader = nil
|
||
|
body, err := googleapi.WithoutDataWrapper.JSONReader(c.training)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
ctype := "application/json"
|
||
|
params := make(url.Values)
|
||
|
params.Set("alt", "json")
|
||
|
if v, ok := c.opt_["fields"]; ok {
|
||
|
params.Set("fields", fmt.Sprintf("%v", v))
|
||
|
}
|
||
|
urls := googleapi.ResolveRelative(c.s.BasePath, "training")
|
||
|
urls += "?" + params.Encode()
|
||
|
req, _ := http.NewRequest("POST", urls, body)
|
||
|
googleapi.SetOpaque(req.URL)
|
||
|
req.Header.Set("Content-Type", ctype)
|
||
|
req.Header.Set("User-Agent", "google-api-go-client/0.5")
|
||
|
res, err := c.s.client.Do(req)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
defer googleapi.CloseBody(res)
|
||
|
if err := googleapi.CheckResponse(res); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
var ret *Training
|
||
|
if err := json.NewDecoder(res.Body).Decode(&ret); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
return ret, nil
|
||
|
// {
|
||
|
// "description": "Begin training your model",
|
||
|
// "httpMethod": "POST",
|
||
|
// "id": "prediction.training.insert",
|
||
|
// "path": "training",
|
||
|
// "request": {
|
||
|
// "$ref": "Training"
|
||
|
// },
|
||
|
// "response": {
|
||
|
// "$ref": "Training"
|
||
|
// },
|
||
|
// "scopes": [
|
||
|
// "https://www.googleapis.com/auth/devstorage.full_control",
|
||
|
// "https://www.googleapis.com/auth/devstorage.read_only",
|
||
|
// "https://www.googleapis.com/auth/devstorage.read_write",
|
||
|
// "https://www.googleapis.com/auth/prediction"
|
||
|
// ]
|
||
|
// }
|
||
|
|
||
|
}
|
||
|
|
||
|
// method id "prediction.training.predict":
|
||
|
|
||
|
type TrainingPredictCall struct {
|
||
|
s *Service
|
||
|
data string
|
||
|
input *Input
|
||
|
opt_ map[string]interface{}
|
||
|
}
|
||
|
|
||
|
// Predict: Submit data and request a prediction
|
||
|
func (r *TrainingService) Predict(data string, input *Input) *TrainingPredictCall {
|
||
|
c := &TrainingPredictCall{s: r.s, opt_: make(map[string]interface{})}
|
||
|
c.data = data
|
||
|
c.input = input
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
// Fields allows partial responses to be retrieved.
|
||
|
// See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse
|
||
|
// for more information.
|
||
|
func (c *TrainingPredictCall) Fields(s ...googleapi.Field) *TrainingPredictCall {
|
||
|
c.opt_["fields"] = googleapi.CombineFields(s)
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
func (c *TrainingPredictCall) Do() (*Output, error) {
|
||
|
var body io.Reader = nil
|
||
|
body, err := googleapi.WithoutDataWrapper.JSONReader(c.input)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
ctype := "application/json"
|
||
|
params := make(url.Values)
|
||
|
params.Set("alt", "json")
|
||
|
if v, ok := c.opt_["fields"]; ok {
|
||
|
params.Set("fields", fmt.Sprintf("%v", v))
|
||
|
}
|
||
|
urls := googleapi.ResolveRelative(c.s.BasePath, "training/{data}/predict")
|
||
|
urls += "?" + params.Encode()
|
||
|
req, _ := http.NewRequest("POST", urls, body)
|
||
|
googleapi.Expand(req.URL, map[string]string{
|
||
|
"data": c.data,
|
||
|
})
|
||
|
req.Header.Set("Content-Type", ctype)
|
||
|
req.Header.Set("User-Agent", "google-api-go-client/0.5")
|
||
|
res, err := c.s.client.Do(req)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
defer googleapi.CloseBody(res)
|
||
|
if err := googleapi.CheckResponse(res); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
var ret *Output
|
||
|
if err := json.NewDecoder(res.Body).Decode(&ret); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
return ret, nil
|
||
|
// {
|
||
|
// "description": "Submit data and request a prediction",
|
||
|
// "httpMethod": "POST",
|
||
|
// "id": "prediction.training.predict",
|
||
|
// "parameterOrder": [
|
||
|
// "data"
|
||
|
// ],
|
||
|
// "parameters": {
|
||
|
// "data": {
|
||
|
// "description": "mybucket/mydata resource in Google Storage",
|
||
|
// "location": "path",
|
||
|
// "required": true,
|
||
|
// "type": "string"
|
||
|
// }
|
||
|
// },
|
||
|
// "path": "training/{data}/predict",
|
||
|
// "request": {
|
||
|
// "$ref": "Input"
|
||
|
// },
|
||
|
// "response": {
|
||
|
// "$ref": "Output"
|
||
|
// },
|
||
|
// "scopes": [
|
||
|
// "https://www.googleapis.com/auth/prediction"
|
||
|
// ]
|
||
|
// }
|
||
|
|
||
|
}
|
||
|
|
||
|
// method id "prediction.training.update":
|
||
|
|
||
|
type TrainingUpdateCall struct {
|
||
|
s *Service
|
||
|
data string
|
||
|
update *Update
|
||
|
opt_ map[string]interface{}
|
||
|
}
|
||
|
|
||
|
// Update: Add new data to a trained model
|
||
|
func (r *TrainingService) Update(data string, update *Update) *TrainingUpdateCall {
|
||
|
c := &TrainingUpdateCall{s: r.s, opt_: make(map[string]interface{})}
|
||
|
c.data = data
|
||
|
c.update = update
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
// Fields allows partial responses to be retrieved.
|
||
|
// See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse
|
||
|
// for more information.
|
||
|
func (c *TrainingUpdateCall) Fields(s ...googleapi.Field) *TrainingUpdateCall {
|
||
|
c.opt_["fields"] = googleapi.CombineFields(s)
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
func (c *TrainingUpdateCall) Do() (*Training, error) {
|
||
|
var body io.Reader = nil
|
||
|
body, err := googleapi.WithoutDataWrapper.JSONReader(c.update)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
ctype := "application/json"
|
||
|
params := make(url.Values)
|
||
|
params.Set("alt", "json")
|
||
|
if v, ok := c.opt_["fields"]; ok {
|
||
|
params.Set("fields", fmt.Sprintf("%v", v))
|
||
|
}
|
||
|
urls := googleapi.ResolveRelative(c.s.BasePath, "training/{data}")
|
||
|
urls += "?" + params.Encode()
|
||
|
req, _ := http.NewRequest("PUT", urls, body)
|
||
|
googleapi.Expand(req.URL, map[string]string{
|
||
|
"data": c.data,
|
||
|
})
|
||
|
req.Header.Set("Content-Type", ctype)
|
||
|
req.Header.Set("User-Agent", "google-api-go-client/0.5")
|
||
|
res, err := c.s.client.Do(req)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
defer googleapi.CloseBody(res)
|
||
|
if err := googleapi.CheckResponse(res); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
var ret *Training
|
||
|
if err := json.NewDecoder(res.Body).Decode(&ret); err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
return ret, nil
|
||
|
// {
|
||
|
// "description": "Add new data to a trained model",
|
||
|
// "httpMethod": "PUT",
|
||
|
// "id": "prediction.training.update",
|
||
|
// "parameterOrder": [
|
||
|
// "data"
|
||
|
// ],
|
||
|
// "parameters": {
|
||
|
// "data": {
|
||
|
// "description": "mybucket/mydata resource in Google Storage",
|
||
|
// "location": "path",
|
||
|
// "required": true,
|
||
|
// "type": "string"
|
||
|
// }
|
||
|
// },
|
||
|
// "path": "training/{data}",
|
||
|
// "request": {
|
||
|
// "$ref": "Update"
|
||
|
// },
|
||
|
// "response": {
|
||
|
// "$ref": "Training"
|
||
|
// },
|
||
|
// "scopes": [
|
||
|
// "https://www.googleapis.com/auth/prediction"
|
||
|
// ]
|
||
|
// }
|
||
|
|
||
|
}
|