dex/vendor/gopkg.in/gorp.v1/gorp.go
2016-03-09 13:04:05 -08:00

2085 lines
58 KiB
Go

// Copyright 2012 James Cooper. All rights reserved.
// Use of this source code is governed by a MIT-style
// license that can be found in the LICENSE file.
// Package gorp provides a simple way to marshal Go structs to and from
// SQL databases. It uses the database/sql package, and should work with any
// compliant database/sql driver.
//
// Source code and project home:
// https://github.com/coopernurse/gorp
//
package gorp
import (
"bytes"
"database/sql"
"database/sql/driver"
"errors"
"fmt"
"reflect"
"regexp"
"strings"
"time"
"log"
"os"
)
// Oracle String (empty string is null)
type OracleString struct {
sql.NullString
}
// Scan implements the Scanner interface.
func (os *OracleString) Scan(value interface{}) error {
if value == nil {
os.String, os.Valid = "", false
return nil
}
os.Valid = true
return os.NullString.Scan(value)
}
// Value implements the driver Valuer interface.
func (os OracleString) Value() (driver.Value, error) {
if !os.Valid || os.String == "" {
return nil, nil
}
return os.String, nil
}
// A nullable Time value
type NullTime struct {
Time time.Time
Valid bool // Valid is true if Time is not NULL
}
// Scan implements the Scanner interface.
func (nt *NullTime) Scan(value interface{}) error {
nt.Time, nt.Valid = value.(time.Time)
return nil
}
// Value implements the driver Valuer interface.
func (nt NullTime) Value() (driver.Value, error) {
if !nt.Valid {
return nil, nil
}
return nt.Time, nil
}
var zeroVal reflect.Value
var versFieldConst = "[gorp_ver_field]"
// OptimisticLockError is returned by Update() or Delete() if the
// struct being modified has a Version field and the value is not equal to
// the current value in the database
type OptimisticLockError struct {
// Table name where the lock error occurred
TableName string
// Primary key values of the row being updated/deleted
Keys []interface{}
// true if a row was found with those keys, indicating the
// LocalVersion is stale. false if no value was found with those
// keys, suggesting the row has been deleted since loaded, or
// was never inserted to begin with
RowExists bool
// Version value on the struct passed to Update/Delete. This value is
// out of sync with the database.
LocalVersion int64
}
// Error returns a description of the cause of the lock error
func (e OptimisticLockError) Error() string {
if e.RowExists {
return fmt.Sprintf("gorp: OptimisticLockError table=%s keys=%v out of date version=%d", e.TableName, e.Keys, e.LocalVersion)
}
return fmt.Sprintf("gorp: OptimisticLockError no row found for table=%s keys=%v", e.TableName, e.Keys)
}
// The TypeConverter interface provides a way to map a value of one
// type to another type when persisting to, or loading from, a database.
//
// Example use cases: Implement type converter to convert bool types to "y"/"n" strings,
// or serialize a struct member as a JSON blob.
type TypeConverter interface {
// ToDb converts val to another type. Called before INSERT/UPDATE operations
ToDb(val interface{}) (interface{}, error)
// FromDb returns a CustomScanner appropriate for this type. This will be used
// to hold values returned from SELECT queries.
//
// In particular the CustomScanner returned should implement a Binder
// function appropriate for the Go type you wish to convert the db value to
//
// If bool==false, then no custom scanner will be used for this field.
FromDb(target interface{}) (CustomScanner, bool)
}
// CustomScanner binds a database column value to a Go type
type CustomScanner struct {
// After a row is scanned, Holder will contain the value from the database column.
// Initialize the CustomScanner with the concrete Go type you wish the database
// driver to scan the raw column into.
Holder interface{}
// Target typically holds a pointer to the target struct field to bind the Holder
// value to.
Target interface{}
// Binder is a custom function that converts the holder value to the target type
// and sets target accordingly. This function should return error if a problem
// occurs converting the holder to the target.
Binder func(holder interface{}, target interface{}) error
}
// Bind is called automatically by gorp after Scan()
func (me CustomScanner) Bind() error {
return me.Binder(me.Holder, me.Target)
}
// DbMap is the root gorp mapping object. Create one of these for each
// database schema you wish to map. Each DbMap contains a list of
// mapped tables.
//
// Example:
//
// dialect := gorp.MySQLDialect{"InnoDB", "UTF8"}
// dbmap := &gorp.DbMap{Db: db, Dialect: dialect}
//
type DbMap struct {
// Db handle to use with this map
Db *sql.DB
// Dialect implementation to use with this map
Dialect Dialect
TypeConverter TypeConverter
tables []*TableMap
logger GorpLogger
logPrefix string
}
// TableMap represents a mapping between a Go struct and a database table
// Use dbmap.AddTable() or dbmap.AddTableWithName() to create these
type TableMap struct {
// Name of database table.
TableName string
SchemaName string
gotype reflect.Type
Columns []*ColumnMap
keys []*ColumnMap
uniqueTogether [][]string
version *ColumnMap
insertPlan bindPlan
updatePlan bindPlan
deletePlan bindPlan
getPlan bindPlan
dbmap *DbMap
}
// ResetSql removes cached insert/update/select/delete SQL strings
// associated with this TableMap. Call this if you've modified
// any column names or the table name itself.
func (t *TableMap) ResetSql() {
t.insertPlan = bindPlan{}
t.updatePlan = bindPlan{}
t.deletePlan = bindPlan{}
t.getPlan = bindPlan{}
}
// SetKeys lets you specify the fields on a struct that map to primary
// key columns on the table. If isAutoIncr is set, result.LastInsertId()
// will be used after INSERT to bind the generated id to the Go struct.
//
// Automatically calls ResetSql() to ensure SQL statements are regenerated.
//
// Panics if isAutoIncr is true, and fieldNames length != 1
//
func (t *TableMap) SetKeys(isAutoIncr bool, fieldNames ...string) *TableMap {
if isAutoIncr && len(fieldNames) != 1 {
panic(fmt.Sprintf(
"gorp: SetKeys: fieldNames length must be 1 if key is auto-increment. (Saw %v fieldNames)",
len(fieldNames)))
}
t.keys = make([]*ColumnMap, 0)
for _, name := range fieldNames {
colmap := t.ColMap(name)
colmap.isPK = true
colmap.isAutoIncr = isAutoIncr
t.keys = append(t.keys, colmap)
}
t.ResetSql()
return t
}
// SetUniqueTogether lets you specify uniqueness constraints across multiple
// columns on the table. Each call adds an additional constraint for the
// specified columns.
//
// Automatically calls ResetSql() to ensure SQL statements are regenerated.
//
// Panics if fieldNames length < 2.
//
func (t *TableMap) SetUniqueTogether(fieldNames ...string) *TableMap {
if len(fieldNames) < 2 {
panic(fmt.Sprintf(
"gorp: SetUniqueTogether: must provide at least two fieldNames to set uniqueness constraint."))
}
columns := make([]string, 0)
for _, name := range fieldNames {
columns = append(columns, name)
}
t.uniqueTogether = append(t.uniqueTogether, columns)
t.ResetSql()
return t
}
// ColMap returns the ColumnMap pointer matching the given struct field
// name. It panics if the struct does not contain a field matching this
// name.
func (t *TableMap) ColMap(field string) *ColumnMap {
col := colMapOrNil(t, field)
if col == nil {
e := fmt.Sprintf("No ColumnMap in table %s type %s with field %s",
t.TableName, t.gotype.Name(), field)
panic(e)
}
return col
}
func colMapOrNil(t *TableMap, field string) *ColumnMap {
for _, col := range t.Columns {
if col.fieldName == field || col.ColumnName == field {
return col
}
}
return nil
}
// SetVersionCol sets the column to use as the Version field. By default
// the "Version" field is used. Returns the column found, or panics
// if the struct does not contain a field matching this name.
//
// Automatically calls ResetSql() to ensure SQL statements are regenerated.
func (t *TableMap) SetVersionCol(field string) *ColumnMap {
c := t.ColMap(field)
t.version = c
t.ResetSql()
return c
}
type bindPlan struct {
query string
argFields []string
keyFields []string
versField string
autoIncrIdx int
autoIncrFieldName string
}
func (plan bindPlan) createBindInstance(elem reflect.Value, conv TypeConverter) (bindInstance, error) {
bi := bindInstance{query: plan.query, autoIncrIdx: plan.autoIncrIdx, autoIncrFieldName: plan.autoIncrFieldName, versField: plan.versField}
if plan.versField != "" {
bi.existingVersion = elem.FieldByName(plan.versField).Int()
}
var err error
for i := 0; i < len(plan.argFields); i++ {
k := plan.argFields[i]
if k == versFieldConst {
newVer := bi.existingVersion + 1
bi.args = append(bi.args, newVer)
if bi.existingVersion == 0 {
elem.FieldByName(plan.versField).SetInt(int64(newVer))
}
} else {
val := elem.FieldByName(k).Interface()
if conv != nil {
val, err = conv.ToDb(val)
if err != nil {
return bindInstance{}, err
}
}
bi.args = append(bi.args, val)
}
}
for i := 0; i < len(plan.keyFields); i++ {
k := plan.keyFields[i]
val := elem.FieldByName(k).Interface()
if conv != nil {
val, err = conv.ToDb(val)
if err != nil {
return bindInstance{}, err
}
}
bi.keys = append(bi.keys, val)
}
return bi, nil
}
type bindInstance struct {
query string
args []interface{}
keys []interface{}
existingVersion int64
versField string
autoIncrIdx int
autoIncrFieldName string
}
func (t *TableMap) bindInsert(elem reflect.Value) (bindInstance, error) {
plan := t.insertPlan
if plan.query == "" {
plan.autoIncrIdx = -1
s := bytes.Buffer{}
s2 := bytes.Buffer{}
s.WriteString(fmt.Sprintf("insert into %s (", t.dbmap.Dialect.QuotedTableForQuery(t.SchemaName, t.TableName)))
x := 0
first := true
for y := range t.Columns {
col := t.Columns[y]
if !(col.isAutoIncr && t.dbmap.Dialect.AutoIncrBindValue() == "") {
if !col.Transient {
if !first {
s.WriteString(",")
s2.WriteString(",")
}
s.WriteString(t.dbmap.Dialect.QuoteField(col.ColumnName))
if col.isAutoIncr {
s2.WriteString(t.dbmap.Dialect.AutoIncrBindValue())
plan.autoIncrIdx = y
plan.autoIncrFieldName = col.fieldName
} else {
s2.WriteString(t.dbmap.Dialect.BindVar(x))
if col == t.version {
plan.versField = col.fieldName
plan.argFields = append(plan.argFields, versFieldConst)
} else {
plan.argFields = append(plan.argFields, col.fieldName)
}
x++
}
first = false
}
} else {
plan.autoIncrIdx = y
plan.autoIncrFieldName = col.fieldName
}
}
s.WriteString(") values (")
s.WriteString(s2.String())
s.WriteString(")")
if plan.autoIncrIdx > -1 {
s.WriteString(t.dbmap.Dialect.AutoIncrInsertSuffix(t.Columns[plan.autoIncrIdx]))
}
s.WriteString(t.dbmap.Dialect.QuerySuffix())
plan.query = s.String()
t.insertPlan = plan
}
return plan.createBindInstance(elem, t.dbmap.TypeConverter)
}
func (t *TableMap) bindUpdate(elem reflect.Value) (bindInstance, error) {
plan := t.updatePlan
if plan.query == "" {
s := bytes.Buffer{}
s.WriteString(fmt.Sprintf("update %s set ", t.dbmap.Dialect.QuotedTableForQuery(t.SchemaName, t.TableName)))
x := 0
for y := range t.Columns {
col := t.Columns[y]
if !col.isAutoIncr && !col.Transient {
if x > 0 {
s.WriteString(", ")
}
s.WriteString(t.dbmap.Dialect.QuoteField(col.ColumnName))
s.WriteString("=")
s.WriteString(t.dbmap.Dialect.BindVar(x))
if col == t.version {
plan.versField = col.fieldName
plan.argFields = append(plan.argFields, versFieldConst)
} else {
plan.argFields = append(plan.argFields, col.fieldName)
}
x++
}
}
s.WriteString(" where ")
for y := range t.keys {
col := t.keys[y]
if y > 0 {
s.WriteString(" and ")
}
s.WriteString(t.dbmap.Dialect.QuoteField(col.ColumnName))
s.WriteString("=")
s.WriteString(t.dbmap.Dialect.BindVar(x))
plan.argFields = append(plan.argFields, col.fieldName)
plan.keyFields = append(plan.keyFields, col.fieldName)
x++
}
if plan.versField != "" {
s.WriteString(" and ")
s.WriteString(t.dbmap.Dialect.QuoteField(t.version.ColumnName))
s.WriteString("=")
s.WriteString(t.dbmap.Dialect.BindVar(x))
plan.argFields = append(plan.argFields, plan.versField)
}
s.WriteString(t.dbmap.Dialect.QuerySuffix())
plan.query = s.String()
t.updatePlan = plan
}
return plan.createBindInstance(elem, t.dbmap.TypeConverter)
}
func (t *TableMap) bindDelete(elem reflect.Value) (bindInstance, error) {
plan := t.deletePlan
if plan.query == "" {
s := bytes.Buffer{}
s.WriteString(fmt.Sprintf("delete from %s", t.dbmap.Dialect.QuotedTableForQuery(t.SchemaName, t.TableName)))
for y := range t.Columns {
col := t.Columns[y]
if !col.Transient {
if col == t.version {
plan.versField = col.fieldName
}
}
}
s.WriteString(" where ")
for x := range t.keys {
k := t.keys[x]
if x > 0 {
s.WriteString(" and ")
}
s.WriteString(t.dbmap.Dialect.QuoteField(k.ColumnName))
s.WriteString("=")
s.WriteString(t.dbmap.Dialect.BindVar(x))
plan.keyFields = append(plan.keyFields, k.fieldName)
plan.argFields = append(plan.argFields, k.fieldName)
}
if plan.versField != "" {
s.WriteString(" and ")
s.WriteString(t.dbmap.Dialect.QuoteField(t.version.ColumnName))
s.WriteString("=")
s.WriteString(t.dbmap.Dialect.BindVar(len(plan.argFields)))
plan.argFields = append(plan.argFields, plan.versField)
}
s.WriteString(t.dbmap.Dialect.QuerySuffix())
plan.query = s.String()
t.deletePlan = plan
}
return plan.createBindInstance(elem, t.dbmap.TypeConverter)
}
func (t *TableMap) bindGet() bindPlan {
plan := t.getPlan
if plan.query == "" {
s := bytes.Buffer{}
s.WriteString("select ")
x := 0
for _, col := range t.Columns {
if !col.Transient {
if x > 0 {
s.WriteString(",")
}
s.WriteString(t.dbmap.Dialect.QuoteField(col.ColumnName))
plan.argFields = append(plan.argFields, col.fieldName)
x++
}
}
s.WriteString(" from ")
s.WriteString(t.dbmap.Dialect.QuotedTableForQuery(t.SchemaName, t.TableName))
s.WriteString(" where ")
for x := range t.keys {
col := t.keys[x]
if x > 0 {
s.WriteString(" and ")
}
s.WriteString(t.dbmap.Dialect.QuoteField(col.ColumnName))
s.WriteString("=")
s.WriteString(t.dbmap.Dialect.BindVar(x))
plan.keyFields = append(plan.keyFields, col.fieldName)
}
s.WriteString(t.dbmap.Dialect.QuerySuffix())
plan.query = s.String()
t.getPlan = plan
}
return plan
}
// ColumnMap represents a mapping between a Go struct field and a single
// column in a table.
// Unique and MaxSize only inform the
// CreateTables() function and are not used by Insert/Update/Delete/Get.
type ColumnMap struct {
// Column name in db table
ColumnName string
// If true, this column is skipped in generated SQL statements
Transient bool
// If true, " unique" is added to create table statements.
// Not used elsewhere
Unique bool
// Passed to Dialect.ToSqlType() to assist in informing the
// correct column type to map to in CreateTables()
// Not used elsewhere
MaxSize int
fieldName string
gotype reflect.Type
isPK bool
isAutoIncr bool
isNotNull bool
}
// Rename allows you to specify the column name in the table
//
// Example: table.ColMap("Updated").Rename("date_updated")
//
func (c *ColumnMap) Rename(colname string) *ColumnMap {
c.ColumnName = colname
return c
}
// SetTransient allows you to mark the column as transient. If true
// this column will be skipped when SQL statements are generated
func (c *ColumnMap) SetTransient(b bool) *ColumnMap {
c.Transient = b
return c
}
// SetUnique adds "unique" to the create table statements for this
// column, if b is true.
func (c *ColumnMap) SetUnique(b bool) *ColumnMap {
c.Unique = b
return c
}
// SetNotNull adds "not null" to the create table statements for this
// column, if nn is true.
func (c *ColumnMap) SetNotNull(nn bool) *ColumnMap {
c.isNotNull = nn
return c
}
// SetMaxSize specifies the max length of values of this column. This is
// passed to the dialect.ToSqlType() function, which can use the value
// to alter the generated type for "create table" statements
func (c *ColumnMap) SetMaxSize(size int) *ColumnMap {
c.MaxSize = size
return c
}
// Transaction represents a database transaction.
// Insert/Update/Delete/Get/Exec operations will be run in the context
// of that transaction. Transactions should be terminated with
// a call to Commit() or Rollback()
type Transaction struct {
dbmap *DbMap
tx *sql.Tx
closed bool
}
// SqlExecutor exposes gorp operations that can be run from Pre/Post
// hooks. This hides whether the current operation that triggered the
// hook is in a transaction.
//
// See the DbMap function docs for each of the functions below for more
// information.
type SqlExecutor interface {
Get(i interface{}, keys ...interface{}) (interface{}, error)
Insert(list ...interface{}) error
Update(list ...interface{}) (int64, error)
Delete(list ...interface{}) (int64, error)
Exec(query string, args ...interface{}) (sql.Result, error)
Select(i interface{}, query string,
args ...interface{}) ([]interface{}, error)
SelectInt(query string, args ...interface{}) (int64, error)
SelectNullInt(query string, args ...interface{}) (sql.NullInt64, error)
SelectFloat(query string, args ...interface{}) (float64, error)
SelectNullFloat(query string, args ...interface{}) (sql.NullFloat64, error)
SelectStr(query string, args ...interface{}) (string, error)
SelectNullStr(query string, args ...interface{}) (sql.NullString, error)
SelectOne(holder interface{}, query string, args ...interface{}) error
query(query string, args ...interface{}) (*sql.Rows, error)
queryRow(query string, args ...interface{}) *sql.Row
}
// Compile-time check that DbMap and Transaction implement the SqlExecutor
// interface.
var _, _ SqlExecutor = &DbMap{}, &Transaction{}
type GorpLogger interface {
Printf(format string, v ...interface{})
}
// TraceOn turns on SQL statement logging for this DbMap. After this is
// called, all SQL statements will be sent to the logger. If prefix is
// a non-empty string, it will be written to the front of all logged
// strings, which can aid in filtering log lines.
//
// Use TraceOn if you want to spy on the SQL statements that gorp
// generates.
//
// Note that the base log.Logger type satisfies GorpLogger, but adapters can
// easily be written for other logging packages (e.g., the golang-sanctioned
// glog framework).
func (m *DbMap) TraceOn(prefix string, logger GorpLogger) {
m.logger = logger
if prefix == "" {
m.logPrefix = prefix
} else {
m.logPrefix = fmt.Sprintf("%s ", prefix)
}
}
// TraceOff turns off tracing. It is idempotent.
func (m *DbMap) TraceOff() {
m.logger = nil
m.logPrefix = ""
}
// AddTable registers the given interface type with gorp. The table name
// will be given the name of the TypeOf(i). You must call this function,
// or AddTableWithName, for any struct type you wish to persist with
// the given DbMap.
//
// This operation is idempotent. If i's type is already mapped, the
// existing *TableMap is returned
func (m *DbMap) AddTable(i interface{}) *TableMap {
return m.AddTableWithName(i, "")
}
// AddTableWithName has the same behavior as AddTable, but sets
// table.TableName to name.
func (m *DbMap) AddTableWithName(i interface{}, name string) *TableMap {
return m.AddTableWithNameAndSchema(i, "", name)
}
// AddTableWithNameAndSchema has the same behavior as AddTable, but sets
// table.TableName to name.
func (m *DbMap) AddTableWithNameAndSchema(i interface{}, schema string, name string) *TableMap {
t := reflect.TypeOf(i)
if name == "" {
name = t.Name()
}
// check if we have a table for this type already
// if so, update the name and return the existing pointer
for i := range m.tables {
table := m.tables[i]
if table.gotype == t {
table.TableName = name
return table
}
}
tmap := &TableMap{gotype: t, TableName: name, SchemaName: schema, dbmap: m}
tmap.Columns, tmap.version = m.readStructColumns(t)
m.tables = append(m.tables, tmap)
return tmap
}
func (m *DbMap) readStructColumns(t reflect.Type) (cols []*ColumnMap, version *ColumnMap) {
n := t.NumField()
for i := 0; i < n; i++ {
f := t.Field(i)
if f.Anonymous && f.Type.Kind() == reflect.Struct {
// Recursively add nested fields in embedded structs.
subcols, subversion := m.readStructColumns(f.Type)
// Don't append nested fields that have the same field
// name as an already-mapped field.
for _, subcol := range subcols {
shouldAppend := true
for _, col := range cols {
if !subcol.Transient && subcol.fieldName == col.fieldName {
shouldAppend = false
break
}
}
if shouldAppend {
cols = append(cols, subcol)
}
}
if subversion != nil {
version = subversion
}
} else {
columnName := f.Tag.Get("db")
if columnName == "" {
columnName = f.Name
}
gotype := f.Type
if m.TypeConverter != nil {
// Make a new pointer to a value of type gotype and
// pass it to the TypeConverter's FromDb method to see
// if a different type should be used for the column
// type during table creation.
value := reflect.New(gotype).Interface()
scanner, useHolder := m.TypeConverter.FromDb(value)
if useHolder {
gotype = reflect.TypeOf(scanner.Holder)
}
}
cm := &ColumnMap{
ColumnName: columnName,
Transient: columnName == "-",
fieldName: f.Name,
gotype: gotype,
}
// Check for nested fields of the same field name and
// override them.
shouldAppend := true
for index, col := range cols {
if !col.Transient && col.fieldName == cm.fieldName {
cols[index] = cm
shouldAppend = false
break
}
}
if shouldAppend {
cols = append(cols, cm)
}
if cm.fieldName == "Version" {
log.New(os.Stderr, "", log.LstdFlags).Println("Warning: Automatic mapping of Version struct members to version columns (see optimistic locking) will be deprecated in next version (V2) See: https://github.com/go-gorp/gorp/pull/214")
version = cm
}
}
}
return
}
// CreateTables iterates through TableMaps registered to this DbMap and
// executes "create table" statements against the database for each.
//
// This is particularly useful in unit tests where you want to create
// and destroy the schema automatically.
func (m *DbMap) CreateTables() error {
return m.createTables(false)
}
// CreateTablesIfNotExists is similar to CreateTables, but starts
// each statement with "create table if not exists" so that existing
// tables do not raise errors
func (m *DbMap) CreateTablesIfNotExists() error {
return m.createTables(true)
}
func (m *DbMap) createTables(ifNotExists bool) error {
var err error
for i := range m.tables {
table := m.tables[i]
s := bytes.Buffer{}
if strings.TrimSpace(table.SchemaName) != "" {
schemaCreate := "create schema"
if ifNotExists {
s.WriteString(m.Dialect.IfSchemaNotExists(schemaCreate, table.SchemaName))
} else {
s.WriteString(schemaCreate)
}
s.WriteString(fmt.Sprintf(" %s;", table.SchemaName))
}
tableCreate := "create table"
if ifNotExists {
s.WriteString(m.Dialect.IfTableNotExists(tableCreate, table.SchemaName, table.TableName))
} else {
s.WriteString(tableCreate)
}
s.WriteString(fmt.Sprintf(" %s (", m.Dialect.QuotedTableForQuery(table.SchemaName, table.TableName)))
x := 0
for _, col := range table.Columns {
if !col.Transient {
if x > 0 {
s.WriteString(", ")
}
stype := m.Dialect.ToSqlType(col.gotype, col.MaxSize, col.isAutoIncr)
s.WriteString(fmt.Sprintf("%s %s", m.Dialect.QuoteField(col.ColumnName), stype))
if col.isPK || col.isNotNull {
s.WriteString(" not null")
}
if col.isPK && len(table.keys) == 1 {
s.WriteString(" primary key")
}
if col.Unique {
s.WriteString(" unique")
}
if col.isAutoIncr {
s.WriteString(fmt.Sprintf(" %s", m.Dialect.AutoIncrStr()))
}
x++
}
}
if len(table.keys) > 1 {
s.WriteString(", primary key (")
for x := range table.keys {
if x > 0 {
s.WriteString(", ")
}
s.WriteString(m.Dialect.QuoteField(table.keys[x].ColumnName))
}
s.WriteString(")")
}
if len(table.uniqueTogether) > 0 {
for _, columns := range table.uniqueTogether {
s.WriteString(", unique (")
for i, column := range columns {
if i > 0 {
s.WriteString(", ")
}
s.WriteString(m.Dialect.QuoteField(column))
}
s.WriteString(")")
}
}
s.WriteString(") ")
s.WriteString(m.Dialect.CreateTableSuffix())
s.WriteString(m.Dialect.QuerySuffix())
_, err = m.Exec(s.String())
if err != nil {
break
}
}
return err
}
// DropTable drops an individual table. Will throw an error
// if the table does not exist.
func (m *DbMap) DropTable(table interface{}) error {
t := reflect.TypeOf(table)
return m.dropTable(t, false)
}
// DropTable drops an individual table. Will NOT throw an error
// if the table does not exist.
func (m *DbMap) DropTableIfExists(table interface{}) error {
t := reflect.TypeOf(table)
return m.dropTable(t, true)
}
// DropTables iterates through TableMaps registered to this DbMap and
// executes "drop table" statements against the database for each.
func (m *DbMap) DropTables() error {
return m.dropTables(false)
}
// DropTablesIfExists is the same as DropTables, but uses the "if exists" clause to
// avoid errors for tables that do not exist.
func (m *DbMap) DropTablesIfExists() error {
return m.dropTables(true)
}
// Goes through all the registered tables, dropping them one by one.
// If an error is encountered, then it is returned and the rest of
// the tables are not dropped.
func (m *DbMap) dropTables(addIfExists bool) (err error) {
for _, table := range m.tables {
err = m.dropTableImpl(table, addIfExists)
if err != nil {
return
}
}
return err
}
// Implementation of dropping a single table.
func (m *DbMap) dropTable(t reflect.Type, addIfExists bool) error {
table := tableOrNil(m, t)
if table == nil {
return errors.New(fmt.Sprintf("table %s was not registered!", table.TableName))
}
return m.dropTableImpl(table, addIfExists)
}
func (m *DbMap) dropTableImpl(table *TableMap, ifExists bool) (err error) {
tableDrop := "drop table"
if ifExists {
tableDrop = m.Dialect.IfTableExists(tableDrop, table.SchemaName, table.TableName)
}
_, err = m.Exec(fmt.Sprintf("%s %s;", tableDrop, m.Dialect.QuotedTableForQuery(table.SchemaName, table.TableName)))
return err
}
// TruncateTables iterates through TableMaps registered to this DbMap and
// executes "truncate table" statements against the database for each, or in the case of
// sqlite, a "delete from" with no "where" clause, which uses the truncate optimization
// (http://www.sqlite.org/lang_delete.html)
func (m *DbMap) TruncateTables() error {
var err error
for i := range m.tables {
table := m.tables[i]
_, e := m.Exec(fmt.Sprintf("%s %s;", m.Dialect.TruncateClause(), m.Dialect.QuotedTableForQuery(table.SchemaName, table.TableName)))
if e != nil {
err = e
}
}
return err
}
// Insert runs a SQL INSERT statement for each element in list. List
// items must be pointers.
//
// Any interface whose TableMap has an auto-increment primary key will
// have its last insert id bound to the PK field on the struct.
//
// The hook functions PreInsert() and/or PostInsert() will be executed
// before/after the INSERT statement if the interface defines them.
//
// Panics if any interface in the list has not been registered with AddTable
func (m *DbMap) Insert(list ...interface{}) error {
return insert(m, m, list...)
}
// Update runs a SQL UPDATE statement for each element in list. List
// items must be pointers.
//
// The hook functions PreUpdate() and/or PostUpdate() will be executed
// before/after the UPDATE statement if the interface defines them.
//
// Returns the number of rows updated.
//
// Returns an error if SetKeys has not been called on the TableMap
// Panics if any interface in the list has not been registered with AddTable
func (m *DbMap) Update(list ...interface{}) (int64, error) {
return update(m, m, list...)
}
// Delete runs a SQL DELETE statement for each element in list. List
// items must be pointers.
//
// The hook functions PreDelete() and/or PostDelete() will be executed
// before/after the DELETE statement if the interface defines them.
//
// Returns the number of rows deleted.
//
// Returns an error if SetKeys has not been called on the TableMap
// Panics if any interface in the list has not been registered with AddTable
func (m *DbMap) Delete(list ...interface{}) (int64, error) {
return delete(m, m, list...)
}
// Get runs a SQL SELECT to fetch a single row from the table based on the
// primary key(s)
//
// i should be an empty value for the struct to load. keys should be
// the primary key value(s) for the row to load. If multiple keys
// exist on the table, the order should match the column order
// specified in SetKeys() when the table mapping was defined.
//
// The hook function PostGet() will be executed after the SELECT
// statement if the interface defines them.
//
// Returns a pointer to a struct that matches or nil if no row is found.
//
// Returns an error if SetKeys has not been called on the TableMap
// Panics if any interface in the list has not been registered with AddTable
func (m *DbMap) Get(i interface{}, keys ...interface{}) (interface{}, error) {
return get(m, m, i, keys...)
}
// Select runs an arbitrary SQL query, binding the columns in the result
// to fields on the struct specified by i. args represent the bind
// parameters for the SQL statement.
//
// Column names on the SELECT statement should be aliased to the field names
// on the struct i. Returns an error if one or more columns in the result
// do not match. It is OK if fields on i are not part of the SQL
// statement.
//
// The hook function PostGet() will be executed after the SELECT
// statement if the interface defines them.
//
// Values are returned in one of two ways:
// 1. If i is a struct or a pointer to a struct, returns a slice of pointers to
// matching rows of type i.
// 2. If i is a pointer to a slice, the results will be appended to that slice
// and nil returned.
//
// i does NOT need to be registered with AddTable()
func (m *DbMap) Select(i interface{}, query string, args ...interface{}) ([]interface{}, error) {
return hookedselect(m, m, i, query, args...)
}
// Exec runs an arbitrary SQL statement. args represent the bind parameters.
// This is equivalent to running: Exec() using database/sql
func (m *DbMap) Exec(query string, args ...interface{}) (sql.Result, error) {
m.trace(query, args...)
return m.Db.Exec(query, args...)
}
// SelectInt is a convenience wrapper around the gorp.SelectInt function
func (m *DbMap) SelectInt(query string, args ...interface{}) (int64, error) {
return SelectInt(m, query, args...)
}
// SelectNullInt is a convenience wrapper around the gorp.SelectNullInt function
func (m *DbMap) SelectNullInt(query string, args ...interface{}) (sql.NullInt64, error) {
return SelectNullInt(m, query, args...)
}
// SelectFloat is a convenience wrapper around the gorp.SelectFlot function
func (m *DbMap) SelectFloat(query string, args ...interface{}) (float64, error) {
return SelectFloat(m, query, args...)
}
// SelectNullFloat is a convenience wrapper around the gorp.SelectNullFloat function
func (m *DbMap) SelectNullFloat(query string, args ...interface{}) (sql.NullFloat64, error) {
return SelectNullFloat(m, query, args...)
}
// SelectStr is a convenience wrapper around the gorp.SelectStr function
func (m *DbMap) SelectStr(query string, args ...interface{}) (string, error) {
return SelectStr(m, query, args...)
}
// SelectNullStr is a convenience wrapper around the gorp.SelectNullStr function
func (m *DbMap) SelectNullStr(query string, args ...interface{}) (sql.NullString, error) {
return SelectNullStr(m, query, args...)
}
// SelectOne is a convenience wrapper around the gorp.SelectOne function
func (m *DbMap) SelectOne(holder interface{}, query string, args ...interface{}) error {
return SelectOne(m, m, holder, query, args...)
}
// Begin starts a gorp Transaction
func (m *DbMap) Begin() (*Transaction, error) {
m.trace("begin;")
tx, err := m.Db.Begin()
if err != nil {
return nil, err
}
return &Transaction{m, tx, false}, nil
}
// TableFor returns the *TableMap corresponding to the given Go Type
// If no table is mapped to that type an error is returned.
// If checkPK is true and the mapped table has no registered PKs, an error is returned.
func (m *DbMap) TableFor(t reflect.Type, checkPK bool) (*TableMap, error) {
table := tableOrNil(m, t)
if table == nil {
return nil, errors.New(fmt.Sprintf("No table found for type: %v", t.Name()))
}
if checkPK && len(table.keys) < 1 {
e := fmt.Sprintf("gorp: No keys defined for table: %s",
table.TableName)
return nil, errors.New(e)
}
return table, nil
}
// Prepare creates a prepared statement for later queries or executions.
// Multiple queries or executions may be run concurrently from the returned statement.
// This is equivalent to running: Prepare() using database/sql
func (m *DbMap) Prepare(query string) (*sql.Stmt, error) {
m.trace(query, nil)
return m.Db.Prepare(query)
}
func tableOrNil(m *DbMap, t reflect.Type) *TableMap {
for i := range m.tables {
table := m.tables[i]
if table.gotype == t {
return table
}
}
return nil
}
func (m *DbMap) tableForPointer(ptr interface{}, checkPK bool) (*TableMap, reflect.Value, error) {
ptrv := reflect.ValueOf(ptr)
if ptrv.Kind() != reflect.Ptr {
e := fmt.Sprintf("gorp: passed non-pointer: %v (kind=%v)", ptr,
ptrv.Kind())
return nil, reflect.Value{}, errors.New(e)
}
elem := ptrv.Elem()
etype := reflect.TypeOf(elem.Interface())
t, err := m.TableFor(etype, checkPK)
if err != nil {
return nil, reflect.Value{}, err
}
return t, elem, nil
}
func (m *DbMap) queryRow(query string, args ...interface{}) *sql.Row {
m.trace(query, args...)
return m.Db.QueryRow(query, args...)
}
func (m *DbMap) query(query string, args ...interface{}) (*sql.Rows, error) {
m.trace(query, args...)
return m.Db.Query(query, args...)
}
func (m *DbMap) trace(query string, args ...interface{}) {
if m.logger != nil {
var margs = argsString(args...)
m.logger.Printf("%s%s [%s]", m.logPrefix, query, margs)
}
}
func argsString(args ...interface{}) string {
var margs string
for i, a := range args {
var v interface{} = a
if x, ok := v.(driver.Valuer); ok {
y, err := x.Value()
if err == nil {
v = y
}
}
switch v.(type) {
case string:
v = fmt.Sprintf("%q", v)
default:
v = fmt.Sprintf("%v", v)
}
margs += fmt.Sprintf("%d:%s", i+1, v)
if i+1 < len(args) {
margs += " "
}
}
return margs
}
///////////////
// Insert has the same behavior as DbMap.Insert(), but runs in a transaction.
func (t *Transaction) Insert(list ...interface{}) error {
return insert(t.dbmap, t, list...)
}
// Update had the same behavior as DbMap.Update(), but runs in a transaction.
func (t *Transaction) Update(list ...interface{}) (int64, error) {
return update(t.dbmap, t, list...)
}
// Delete has the same behavior as DbMap.Delete(), but runs in a transaction.
func (t *Transaction) Delete(list ...interface{}) (int64, error) {
return delete(t.dbmap, t, list...)
}
// Get has the same behavior as DbMap.Get(), but runs in a transaction.
func (t *Transaction) Get(i interface{}, keys ...interface{}) (interface{}, error) {
return get(t.dbmap, t, i, keys...)
}
// Select has the same behavior as DbMap.Select(), but runs in a transaction.
func (t *Transaction) Select(i interface{}, query string, args ...interface{}) ([]interface{}, error) {
return hookedselect(t.dbmap, t, i, query, args...)
}
// Exec has the same behavior as DbMap.Exec(), but runs in a transaction.
func (t *Transaction) Exec(query string, args ...interface{}) (sql.Result, error) {
t.dbmap.trace(query, args...)
return t.tx.Exec(query, args...)
}
// SelectInt is a convenience wrapper around the gorp.SelectInt function.
func (t *Transaction) SelectInt(query string, args ...interface{}) (int64, error) {
return SelectInt(t, query, args...)
}
// SelectNullInt is a convenience wrapper around the gorp.SelectNullInt function.
func (t *Transaction) SelectNullInt(query string, args ...interface{}) (sql.NullInt64, error) {
return SelectNullInt(t, query, args...)
}
// SelectFloat is a convenience wrapper around the gorp.SelectFloat function.
func (t *Transaction) SelectFloat(query string, args ...interface{}) (float64, error) {
return SelectFloat(t, query, args...)
}
// SelectNullFloat is a convenience wrapper around the gorp.SelectNullFloat function.
func (t *Transaction) SelectNullFloat(query string, args ...interface{}) (sql.NullFloat64, error) {
return SelectNullFloat(t, query, args...)
}
// SelectStr is a convenience wrapper around the gorp.SelectStr function.
func (t *Transaction) SelectStr(query string, args ...interface{}) (string, error) {
return SelectStr(t, query, args...)
}
// SelectNullStr is a convenience wrapper around the gorp.SelectNullStr function.
func (t *Transaction) SelectNullStr(query string, args ...interface{}) (sql.NullString, error) {
return SelectNullStr(t, query, args...)
}
// SelectOne is a convenience wrapper around the gorp.SelectOne function.
func (t *Transaction) SelectOne(holder interface{}, query string, args ...interface{}) error {
return SelectOne(t.dbmap, t, holder, query, args...)
}
// Commit commits the underlying database transaction.
func (t *Transaction) Commit() error {
if !t.closed {
t.closed = true
t.dbmap.trace("commit;")
return t.tx.Commit()
}
return sql.ErrTxDone
}
// Rollback rolls back the underlying database transaction.
func (t *Transaction) Rollback() error {
if !t.closed {
t.closed = true
t.dbmap.trace("rollback;")
return t.tx.Rollback()
}
return sql.ErrTxDone
}
// Savepoint creates a savepoint with the given name. The name is interpolated
// directly into the SQL SAVEPOINT statement, so you must sanitize it if it is
// derived from user input.
func (t *Transaction) Savepoint(name string) error {
query := "savepoint " + t.dbmap.Dialect.QuoteField(name)
t.dbmap.trace(query, nil)
_, err := t.tx.Exec(query)
return err
}
// RollbackToSavepoint rolls back to the savepoint with the given name. The
// name is interpolated directly into the SQL SAVEPOINT statement, so you must
// sanitize it if it is derived from user input.
func (t *Transaction) RollbackToSavepoint(savepoint string) error {
query := "rollback to savepoint " + t.dbmap.Dialect.QuoteField(savepoint)
t.dbmap.trace(query, nil)
_, err := t.tx.Exec(query)
return err
}
// ReleaseSavepint releases the savepoint with the given name. The name is
// interpolated directly into the SQL SAVEPOINT statement, so you must sanitize
// it if it is derived from user input.
func (t *Transaction) ReleaseSavepoint(savepoint string) error {
query := "release savepoint " + t.dbmap.Dialect.QuoteField(savepoint)
t.dbmap.trace(query, nil)
_, err := t.tx.Exec(query)
return err
}
// Prepare has the same behavior as DbMap.Prepare(), but runs in a transaction.
func (t *Transaction) Prepare(query string) (*sql.Stmt, error) {
t.dbmap.trace(query, nil)
return t.tx.Prepare(query)
}
func (t *Transaction) queryRow(query string, args ...interface{}) *sql.Row {
t.dbmap.trace(query, args...)
return t.tx.QueryRow(query, args...)
}
func (t *Transaction) query(query string, args ...interface{}) (*sql.Rows, error) {
t.dbmap.trace(query, args...)
return t.tx.Query(query, args...)
}
///////////////
// SelectInt executes the given query, which should be a SELECT statement for a single
// integer column, and returns the value of the first row returned. If no rows are
// found, zero is returned.
func SelectInt(e SqlExecutor, query string, args ...interface{}) (int64, error) {
var h int64
err := selectVal(e, &h, query, args...)
if err != nil && err != sql.ErrNoRows {
return 0, err
}
return h, nil
}
// SelectNullInt executes the given query, which should be a SELECT statement for a single
// integer column, and returns the value of the first row returned. If no rows are
// found, the empty sql.NullInt64 value is returned.
func SelectNullInt(e SqlExecutor, query string, args ...interface{}) (sql.NullInt64, error) {
var h sql.NullInt64
err := selectVal(e, &h, query, args...)
if err != nil && err != sql.ErrNoRows {
return h, err
}
return h, nil
}
// SelectFloat executes the given query, which should be a SELECT statement for a single
// float column, and returns the value of the first row returned. If no rows are
// found, zero is returned.
func SelectFloat(e SqlExecutor, query string, args ...interface{}) (float64, error) {
var h float64
err := selectVal(e, &h, query, args...)
if err != nil && err != sql.ErrNoRows {
return 0, err
}
return h, nil
}
// SelectNullFloat executes the given query, which should be a SELECT statement for a single
// float column, and returns the value of the first row returned. If no rows are
// found, the empty sql.NullInt64 value is returned.
func SelectNullFloat(e SqlExecutor, query string, args ...interface{}) (sql.NullFloat64, error) {
var h sql.NullFloat64
err := selectVal(e, &h, query, args...)
if err != nil && err != sql.ErrNoRows {
return h, err
}
return h, nil
}
// SelectStr executes the given query, which should be a SELECT statement for a single
// char/varchar column, and returns the value of the first row returned. If no rows are
// found, an empty string is returned.
func SelectStr(e SqlExecutor, query string, args ...interface{}) (string, error) {
var h string
err := selectVal(e, &h, query, args...)
if err != nil && err != sql.ErrNoRows {
return "", err
}
return h, nil
}
// SelectNullStr executes the given query, which should be a SELECT
// statement for a single char/varchar column, and returns the value
// of the first row returned. If no rows are found, the empty
// sql.NullString is returned.
func SelectNullStr(e SqlExecutor, query string, args ...interface{}) (sql.NullString, error) {
var h sql.NullString
err := selectVal(e, &h, query, args...)
if err != nil && err != sql.ErrNoRows {
return h, err
}
return h, nil
}
// SelectOne executes the given query (which should be a SELECT statement)
// and binds the result to holder, which must be a pointer.
//
// If no row is found, an error (sql.ErrNoRows specifically) will be returned
//
// If more than one row is found, an error will be returned.
//
func SelectOne(m *DbMap, e SqlExecutor, holder interface{}, query string, args ...interface{}) error {
t := reflect.TypeOf(holder)
if t.Kind() == reflect.Ptr {
t = t.Elem()
} else {
return fmt.Errorf("gorp: SelectOne holder must be a pointer, but got: %t", holder)
}
// Handle pointer to pointer
isptr := false
if t.Kind() == reflect.Ptr {
isptr = true
t = t.Elem()
}
if t.Kind() == reflect.Struct {
var nonFatalErr error
list, err := hookedselect(m, e, holder, query, args...)
if err != nil {
if !NonFatalError(err) {
return err
}
nonFatalErr = err
}
dest := reflect.ValueOf(holder)
if isptr {
dest = dest.Elem()
}
if list != nil && len(list) > 0 {
// check for multiple rows
if len(list) > 1 {
return fmt.Errorf("gorp: multiple rows returned for: %s - %v", query, args)
}
// Initialize if nil
if dest.IsNil() {
dest.Set(reflect.New(t))
}
// only one row found
src := reflect.ValueOf(list[0])
dest.Elem().Set(src.Elem())
} else {
// No rows found, return a proper error.
return sql.ErrNoRows
}
return nonFatalErr
}
return selectVal(e, holder, query, args...)
}
func selectVal(e SqlExecutor, holder interface{}, query string, args ...interface{}) error {
if len(args) == 1 {
switch m := e.(type) {
case *DbMap:
query, args = maybeExpandNamedQuery(m, query, args)
case *Transaction:
query, args = maybeExpandNamedQuery(m.dbmap, query, args)
}
}
rows, err := e.query(query, args...)
if err != nil {
return err
}
defer rows.Close()
if !rows.Next() {
return sql.ErrNoRows
}
return rows.Scan(holder)
}
///////////////
func hookedselect(m *DbMap, exec SqlExecutor, i interface{}, query string,
args ...interface{}) ([]interface{}, error) {
var nonFatalErr error
list, err := rawselect(m, exec, i, query, args...)
if err != nil {
if !NonFatalError(err) {
return nil, err
}
nonFatalErr = err
}
// Determine where the results are: written to i, or returned in list
if t, _ := toSliceType(i); t == nil {
for _, v := range list {
if v, ok := v.(HasPostGet); ok {
err := v.PostGet(exec)
if err != nil {
return nil, err
}
}
}
} else {
resultsValue := reflect.Indirect(reflect.ValueOf(i))
for i := 0; i < resultsValue.Len(); i++ {
if v, ok := resultsValue.Index(i).Interface().(HasPostGet); ok {
err := v.PostGet(exec)
if err != nil {
return nil, err
}
}
}
}
return list, nonFatalErr
}
func rawselect(m *DbMap, exec SqlExecutor, i interface{}, query string,
args ...interface{}) ([]interface{}, error) {
var (
appendToSlice = false // Write results to i directly?
intoStruct = true // Selecting into a struct?
pointerElements = true // Are the slice elements pointers (vs values)?
)
var nonFatalErr error
// get type for i, verifying it's a supported destination
t, err := toType(i)
if err != nil {
var err2 error
if t, err2 = toSliceType(i); t == nil {
if err2 != nil {
return nil, err2
}
return nil, err
}
pointerElements = t.Kind() == reflect.Ptr
if pointerElements {
t = t.Elem()
}
appendToSlice = true
intoStruct = t.Kind() == reflect.Struct
}
// If the caller supplied a single struct/map argument, assume a "named
// parameter" query. Extract the named arguments from the struct/map, create
// the flat arg slice, and rewrite the query to use the dialect's placeholder.
if len(args) == 1 {
query, args = maybeExpandNamedQuery(m, query, args)
}
// Run the query
rows, err := exec.query(query, args...)
if err != nil {
return nil, err
}
defer rows.Close()
// Fetch the column names as returned from db
cols, err := rows.Columns()
if err != nil {
return nil, err
}
if !intoStruct && len(cols) > 1 {
return nil, fmt.Errorf("gorp: select into non-struct slice requires 1 column, got %d", len(cols))
}
var colToFieldIndex [][]int
if intoStruct {
if colToFieldIndex, err = columnToFieldIndex(m, t, cols); err != nil {
if !NonFatalError(err) {
return nil, err
}
nonFatalErr = err
}
}
conv := m.TypeConverter
// Add results to one of these two slices.
var (
list = make([]interface{}, 0)
sliceValue = reflect.Indirect(reflect.ValueOf(i))
)
for {
if !rows.Next() {
// if error occured return rawselect
if rows.Err() != nil {
return nil, rows.Err()
}
// time to exit from outer "for" loop
break
}
v := reflect.New(t)
dest := make([]interface{}, len(cols))
custScan := make([]CustomScanner, 0)
for x := range cols {
f := v.Elem()
if intoStruct {
index := colToFieldIndex[x]
if index == nil {
// this field is not present in the struct, so create a dummy
// value for rows.Scan to scan into
var dummy sql.RawBytes
dest[x] = &dummy
continue
}
f = f.FieldByIndex(index)
}
target := f.Addr().Interface()
if conv != nil {
scanner, ok := conv.FromDb(target)
if ok {
target = scanner.Holder
custScan = append(custScan, scanner)
}
}
dest[x] = target
}
err = rows.Scan(dest...)
if err != nil {
return nil, err
}
for _, c := range custScan {
err = c.Bind()
if err != nil {
return nil, err
}
}
if appendToSlice {
if !pointerElements {
v = v.Elem()
}
sliceValue.Set(reflect.Append(sliceValue, v))
} else {
list = append(list, v.Interface())
}
}
if appendToSlice && sliceValue.IsNil() {
sliceValue.Set(reflect.MakeSlice(sliceValue.Type(), 0, 0))
}
return list, nonFatalErr
}
// maybeExpandNamedQuery checks the given arg to see if it's eligible to be used
// as input to a named query. If so, it rewrites the query to use
// dialect-dependent bindvars and instantiates the corresponding slice of
// parameters by extracting data from the map / struct.
// If not, returns the input values unchanged.
func maybeExpandNamedQuery(m *DbMap, query string, args []interface{}) (string, []interface{}) {
arg := reflect.ValueOf(args[0])
for arg.Kind() == reflect.Ptr {
arg = arg.Elem()
}
switch {
case arg.Kind() == reflect.Map && arg.Type().Key().Kind() == reflect.String:
return expandNamedQuery(m, query, func(key string) reflect.Value {
return arg.MapIndex(reflect.ValueOf(key))
})
// #84 - ignore time.Time structs here - there may be a cleaner way to do this
case arg.Kind() == reflect.Struct && !(arg.Type().PkgPath() == "time" && arg.Type().Name() == "Time"):
return expandNamedQuery(m, query, arg.FieldByName)
}
return query, args
}
var keyRegexp = regexp.MustCompile(`:[[:word:]]+`)
// expandNamedQuery accepts a query with placeholders of the form ":key", and a
// single arg of Kind Struct or Map[string]. It returns the query with the
// dialect's placeholders, and a slice of args ready for positional insertion
// into the query.
func expandNamedQuery(m *DbMap, query string, keyGetter func(key string) reflect.Value) (string, []interface{}) {
var (
n int
args []interface{}
)
return keyRegexp.ReplaceAllStringFunc(query, func(key string) string {
val := keyGetter(key[1:])
if !val.IsValid() {
return key
}
args = append(args, val.Interface())
newVar := m.Dialect.BindVar(n)
n++
return newVar
}), args
}
func columnToFieldIndex(m *DbMap, t reflect.Type, cols []string) ([][]int, error) {
colToFieldIndex := make([][]int, len(cols))
// check if type t is a mapped table - if so we'll
// check the table for column aliasing below
tableMapped := false
table := tableOrNil(m, t)
if table != nil {
tableMapped = true
}
// Loop over column names and find field in i to bind to
// based on column name. all returned columns must match
// a field in the i struct
missingColNames := []string{}
for x := range cols {
colName := strings.ToLower(cols[x])
field, found := t.FieldByNameFunc(func(fieldName string) bool {
field, _ := t.FieldByName(fieldName)
fieldName = field.Tag.Get("db")
if fieldName == "-" {
return false
} else if fieldName == "" {
fieldName = field.Name
}
if tableMapped {
colMap := colMapOrNil(table, fieldName)
if colMap != nil {
fieldName = colMap.ColumnName
}
}
return colName == strings.ToLower(fieldName)
})
if found {
colToFieldIndex[x] = field.Index
}
if colToFieldIndex[x] == nil {
missingColNames = append(missingColNames, colName)
}
}
if len(missingColNames) > 0 {
return colToFieldIndex, &NoFieldInTypeError{
TypeName: t.Name(),
MissingColNames: missingColNames,
}
}
return colToFieldIndex, nil
}
func fieldByName(val reflect.Value, fieldName string) *reflect.Value {
// try to find field by exact match
f := val.FieldByName(fieldName)
if f != zeroVal {
return &f
}
// try to find by case insensitive match - only the Postgres driver
// seems to require this - in the case where columns are aliased in the sql
fieldNameL := strings.ToLower(fieldName)
fieldCount := val.NumField()
t := val.Type()
for i := 0; i < fieldCount; i++ {
sf := t.Field(i)
if strings.ToLower(sf.Name) == fieldNameL {
f := val.Field(i)
return &f
}
}
return nil
}
// toSliceType returns the element type of the given object, if the object is a
// "*[]*Element" or "*[]Element". If not, returns nil.
// err is returned if the user was trying to pass a pointer-to-slice but failed.
func toSliceType(i interface{}) (reflect.Type, error) {
t := reflect.TypeOf(i)
if t.Kind() != reflect.Ptr {
// If it's a slice, return a more helpful error message
if t.Kind() == reflect.Slice {
return nil, fmt.Errorf("gorp: Cannot SELECT into a non-pointer slice: %v", t)
}
return nil, nil
}
if t = t.Elem(); t.Kind() != reflect.Slice {
return nil, nil
}
return t.Elem(), nil
}
func toType(i interface{}) (reflect.Type, error) {
t := reflect.TypeOf(i)
// If a Pointer to a type, follow
for t.Kind() == reflect.Ptr {
t = t.Elem()
}
if t.Kind() != reflect.Struct {
return nil, fmt.Errorf("gorp: Cannot SELECT into this type: %v", reflect.TypeOf(i))
}
return t, nil
}
func get(m *DbMap, exec SqlExecutor, i interface{},
keys ...interface{}) (interface{}, error) {
t, err := toType(i)
if err != nil {
return nil, err
}
table, err := m.TableFor(t, true)
if err != nil {
return nil, err
}
plan := table.bindGet()
v := reflect.New(t)
dest := make([]interface{}, len(plan.argFields))
conv := m.TypeConverter
custScan := make([]CustomScanner, 0)
for x, fieldName := range plan.argFields {
f := v.Elem().FieldByName(fieldName)
target := f.Addr().Interface()
if conv != nil {
scanner, ok := conv.FromDb(target)
if ok {
target = scanner.Holder
custScan = append(custScan, scanner)
}
}
dest[x] = target
}
row := exec.queryRow(plan.query, keys...)
err = row.Scan(dest...)
if err != nil {
if err == sql.ErrNoRows {
err = nil
}
return nil, err
}
for _, c := range custScan {
err = c.Bind()
if err != nil {
return nil, err
}
}
if v, ok := v.Interface().(HasPostGet); ok {
err := v.PostGet(exec)
if err != nil {
return nil, err
}
}
return v.Interface(), nil
}
func delete(m *DbMap, exec SqlExecutor, list ...interface{}) (int64, error) {
count := int64(0)
for _, ptr := range list {
table, elem, err := m.tableForPointer(ptr, true)
if err != nil {
return -1, err
}
eval := elem.Addr().Interface()
if v, ok := eval.(HasPreDelete); ok {
err = v.PreDelete(exec)
if err != nil {
return -1, err
}
}
bi, err := table.bindDelete(elem)
if err != nil {
return -1, err
}
res, err := exec.Exec(bi.query, bi.args...)
if err != nil {
return -1, err
}
rows, err := res.RowsAffected()
if err != nil {
return -1, err
}
if rows == 0 && bi.existingVersion > 0 {
return lockError(m, exec, table.TableName,
bi.existingVersion, elem, bi.keys...)
}
count += rows
if v, ok := eval.(HasPostDelete); ok {
err := v.PostDelete(exec)
if err != nil {
return -1, err
}
}
}
return count, nil
}
func update(m *DbMap, exec SqlExecutor, list ...interface{}) (int64, error) {
count := int64(0)
for _, ptr := range list {
table, elem, err := m.tableForPointer(ptr, true)
if err != nil {
return -1, err
}
eval := elem.Addr().Interface()
if v, ok := eval.(HasPreUpdate); ok {
err = v.PreUpdate(exec)
if err != nil {
return -1, err
}
}
bi, err := table.bindUpdate(elem)
if err != nil {
return -1, err
}
res, err := exec.Exec(bi.query, bi.args...)
if err != nil {
return -1, err
}
rows, err := res.RowsAffected()
if err != nil {
return -1, err
}
if rows == 0 && bi.existingVersion > 0 {
return lockError(m, exec, table.TableName,
bi.existingVersion, elem, bi.keys...)
}
if bi.versField != "" {
elem.FieldByName(bi.versField).SetInt(bi.existingVersion + 1)
}
count += rows
if v, ok := eval.(HasPostUpdate); ok {
err = v.PostUpdate(exec)
if err != nil {
return -1, err
}
}
}
return count, nil
}
func insert(m *DbMap, exec SqlExecutor, list ...interface{}) error {
for _, ptr := range list {
table, elem, err := m.tableForPointer(ptr, false)
if err != nil {
return err
}
eval := elem.Addr().Interface()
if v, ok := eval.(HasPreInsert); ok {
err := v.PreInsert(exec)
if err != nil {
return err
}
}
bi, err := table.bindInsert(elem)
if err != nil {
return err
}
if bi.autoIncrIdx > -1 {
f := elem.FieldByName(bi.autoIncrFieldName)
switch inserter := m.Dialect.(type) {
case IntegerAutoIncrInserter:
id, err := inserter.InsertAutoIncr(exec, bi.query, bi.args...)
if err != nil {
return err
}
k := f.Kind()
if (k == reflect.Int) || (k == reflect.Int16) || (k == reflect.Int32) || (k == reflect.Int64) {
f.SetInt(id)
} else if (k == reflect.Uint) || (k == reflect.Uint16) || (k == reflect.Uint32) || (k == reflect.Uint64) {
f.SetUint(uint64(id))
} else {
return fmt.Errorf("gorp: Cannot set autoincrement value on non-Int field. SQL=%s autoIncrIdx=%d autoIncrFieldName=%s", bi.query, bi.autoIncrIdx, bi.autoIncrFieldName)
}
case TargetedAutoIncrInserter:
err := inserter.InsertAutoIncrToTarget(exec, bi.query, f.Addr().Interface(), bi.args...)
if err != nil {
return err
}
default:
return fmt.Errorf("gorp: Cannot use autoincrement fields on dialects that do not implement an autoincrementing interface")
}
} else {
_, err := exec.Exec(bi.query, bi.args...)
if err != nil {
return err
}
}
if v, ok := eval.(HasPostInsert); ok {
err := v.PostInsert(exec)
if err != nil {
return err
}
}
}
return nil
}
func lockError(m *DbMap, exec SqlExecutor, tableName string,
existingVer int64, elem reflect.Value,
keys ...interface{}) (int64, error) {
existing, err := get(m, exec, elem.Interface(), keys...)
if err != nil {
return -1, err
}
ole := OptimisticLockError{tableName, keys, true, existingVer}
if existing == nil {
ole.RowExists = false
}
return -1, ole
}
// PostUpdate() will be executed after the GET statement.
type HasPostGet interface {
PostGet(SqlExecutor) error
}
// PostUpdate() will be executed after the DELETE statement
type HasPostDelete interface {
PostDelete(SqlExecutor) error
}
// PostUpdate() will be executed after the UPDATE statement
type HasPostUpdate interface {
PostUpdate(SqlExecutor) error
}
// PostInsert() will be executed after the INSERT statement
type HasPostInsert interface {
PostInsert(SqlExecutor) error
}
// PreDelete() will be executed before the DELETE statement.
type HasPreDelete interface {
PreDelete(SqlExecutor) error
}
// PreUpdate() will be executed before UPDATE statement.
type HasPreUpdate interface {
PreUpdate(SqlExecutor) error
}
// PreInsert() will be executed before INSERT statement.
type HasPreInsert interface {
PreInsert(SqlExecutor) error
}