forked from mystiq/dex
717 lines
20 KiB
Go
717 lines
20 KiB
Go
// Package prediction provides access to the Prediction API.
|
|
//
|
|
// See https://developers.google.com/prediction/docs/developer-guide
|
|
//
|
|
// Usage example:
|
|
//
|
|
// import "google.golang.org/api/prediction/v1.4"
|
|
// ...
|
|
// predictionService, err := prediction.New(oauthHttpClient)
|
|
package prediction
|
|
|
|
import (
|
|
"bytes"
|
|
"encoding/json"
|
|
"errors"
|
|
"fmt"
|
|
"google.golang.org/api/googleapi"
|
|
"io"
|
|
"net/http"
|
|
"net/url"
|
|
"strconv"
|
|
"strings"
|
|
)
|
|
|
|
// Always reference these packages, just in case the auto-generated code
|
|
// below doesn't.
|
|
var _ = bytes.NewBuffer
|
|
var _ = strconv.Itoa
|
|
var _ = fmt.Sprintf
|
|
var _ = json.NewDecoder
|
|
var _ = io.Copy
|
|
var _ = url.Parse
|
|
var _ = googleapi.Version
|
|
var _ = errors.New
|
|
var _ = strings.Replace
|
|
|
|
const apiId = "prediction:v1.4"
|
|
const apiName = "prediction"
|
|
const apiVersion = "v1.4"
|
|
const basePath = "https://www.googleapis.com/prediction/v1.4/"
|
|
|
|
// OAuth2 scopes used by this API.
|
|
const (
|
|
// Manage your data and permissions in Google Cloud Storage
|
|
DevstorageFull_controlScope = "https://www.googleapis.com/auth/devstorage.full_control"
|
|
|
|
// View your data in Google Cloud Storage
|
|
DevstorageRead_onlyScope = "https://www.googleapis.com/auth/devstorage.read_only"
|
|
|
|
// Manage your data in Google Cloud Storage
|
|
DevstorageRead_writeScope = "https://www.googleapis.com/auth/devstorage.read_write"
|
|
|
|
// Manage your data in the Google Prediction API
|
|
PredictionScope = "https://www.googleapis.com/auth/prediction"
|
|
)
|
|
|
|
func New(client *http.Client) (*Service, error) {
|
|
if client == nil {
|
|
return nil, errors.New("client is nil")
|
|
}
|
|
s := &Service{client: client, BasePath: basePath}
|
|
s.Hostedmodels = NewHostedmodelsService(s)
|
|
s.Trainedmodels = NewTrainedmodelsService(s)
|
|
return s, nil
|
|
}
|
|
|
|
type Service struct {
|
|
client *http.Client
|
|
BasePath string // API endpoint base URL
|
|
|
|
Hostedmodels *HostedmodelsService
|
|
|
|
Trainedmodels *TrainedmodelsService
|
|
}
|
|
|
|
func NewHostedmodelsService(s *Service) *HostedmodelsService {
|
|
rs := &HostedmodelsService{s: s}
|
|
return rs
|
|
}
|
|
|
|
type HostedmodelsService struct {
|
|
s *Service
|
|
}
|
|
|
|
func NewTrainedmodelsService(s *Service) *TrainedmodelsService {
|
|
rs := &TrainedmodelsService{s: s}
|
|
return rs
|
|
}
|
|
|
|
type TrainedmodelsService struct {
|
|
s *Service
|
|
}
|
|
|
|
type Input struct {
|
|
// Input: Input to the model for a prediction
|
|
Input *InputInput `json:"input,omitempty"`
|
|
}
|
|
|
|
type InputInput struct {
|
|
// CsvInstance: A list of input features, these can be strings or
|
|
// doubles.
|
|
CsvInstance []interface{} `json:"csvInstance,omitempty"`
|
|
}
|
|
|
|
type Output struct {
|
|
// Id: The unique name for the predictive model.
|
|
Id string `json:"id,omitempty"`
|
|
|
|
// Kind: What kind of resource this is.
|
|
Kind string `json:"kind,omitempty"`
|
|
|
|
// OutputLabel: The most likely class label [Categorical models only].
|
|
OutputLabel string `json:"outputLabel,omitempty"`
|
|
|
|
// OutputMulti: A list of class labels with their estimated
|
|
// probabilities [Categorical models only].
|
|
OutputMulti []*OutputOutputMulti `json:"outputMulti,omitempty"`
|
|
|
|
// OutputValue: The estimated regression value [Regression models only].
|
|
OutputValue float64 `json:"outputValue,omitempty"`
|
|
|
|
// SelfLink: A URL to re-request this resource.
|
|
SelfLink string `json:"selfLink,omitempty"`
|
|
}
|
|
|
|
type OutputOutputMulti struct {
|
|
// Label: The class label.
|
|
Label string `json:"label,omitempty"`
|
|
|
|
// Score: The probability of the class label.
|
|
Score float64 `json:"score,omitempty"`
|
|
}
|
|
|
|
type Training struct {
|
|
// DataAnalysis: Data Analysis.
|
|
DataAnalysis *TrainingDataAnalysis `json:"dataAnalysis,omitempty"`
|
|
|
|
// Id: The unique name for the predictive model.
|
|
Id string `json:"id,omitempty"`
|
|
|
|
// Kind: What kind of resource this is.
|
|
Kind string `json:"kind,omitempty"`
|
|
|
|
// ModelInfo: Model metadata.
|
|
ModelInfo *TrainingModelInfo `json:"modelInfo,omitempty"`
|
|
|
|
// SelfLink: A URL to re-request this resource.
|
|
SelfLink string `json:"selfLink,omitempty"`
|
|
|
|
// StorageDataLocation: Google storage location of the training data
|
|
// file.
|
|
StorageDataLocation string `json:"storageDataLocation,omitempty"`
|
|
|
|
// StoragePMMLLocation: Google storage location of the preprocessing
|
|
// pmml file.
|
|
StoragePMMLLocation string `json:"storagePMMLLocation,omitempty"`
|
|
|
|
// StoragePMMLModelLocation: Google storage location of the pmml model
|
|
// file.
|
|
StoragePMMLModelLocation string `json:"storagePMMLModelLocation,omitempty"`
|
|
|
|
// TrainingStatus: The current status of the training job. This can be
|
|
// one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
|
|
TrainingStatus string `json:"trainingStatus,omitempty"`
|
|
|
|
// Utility: A class weighting function, which allows the importance
|
|
// weights for class labels to be specified [Categorical models only].
|
|
Utility []*TrainingUtility `json:"utility,omitempty"`
|
|
}
|
|
|
|
type TrainingDataAnalysis struct {
|
|
Warnings []string `json:"warnings,omitempty"`
|
|
}
|
|
|
|
type TrainingModelInfo struct {
|
|
// ClassWeightedAccuracy: Estimated accuracy of model taking utility
|
|
// weights into account [Categorical models only].
|
|
ClassWeightedAccuracy float64 `json:"classWeightedAccuracy,omitempty"`
|
|
|
|
// ClassificationAccuracy: A number between 0.0 and 1.0, where 1.0 is
|
|
// 100% accurate. This is an estimate, based on the amount and quality
|
|
// of the training data, of the estimated prediction accuracy. You can
|
|
// use this is a guide to decide whether the results are accurate enough
|
|
// for your needs. This estimate will be more reliable if your real
|
|
// input data is similar to your training data [Categorical models
|
|
// only].
|
|
ClassificationAccuracy float64 `json:"classificationAccuracy,omitempty"`
|
|
|
|
// ConfusionMatrix: An output confusion matrix. This shows an estimate
|
|
// for how this model will do in predictions. This is first indexed by
|
|
// the true class label. For each true class label, this provides a pair
|
|
// {predicted_label, count}, where count is the estimated number of
|
|
// times the model will predict the predicted label given the true
|
|
// label. Will not output if more then 100 classes [Categorical models
|
|
// only].
|
|
ConfusionMatrix *TrainingModelInfoConfusionMatrix `json:"confusionMatrix,omitempty"`
|
|
|
|
// ConfusionMatrixRowTotals: A list of the confusion matrix row totals
|
|
ConfusionMatrixRowTotals *TrainingModelInfoConfusionMatrixRowTotals `json:"confusionMatrixRowTotals,omitempty"`
|
|
|
|
// MeanSquaredError: An estimated mean squared error. The can be used to
|
|
// measure the quality of the predicted model [Regression models only].
|
|
MeanSquaredError float64 `json:"meanSquaredError,omitempty"`
|
|
|
|
// ModelType: Type of predictive model (CLASSIFICATION or REGRESSION)
|
|
ModelType string `json:"modelType,omitempty"`
|
|
|
|
// NumberInstances: Number of valid data instances used in the trained
|
|
// model.
|
|
NumberInstances int64 `json:"numberInstances,omitempty,string"`
|
|
|
|
// NumberLabels: Number of class labels in the trained model
|
|
// [Categorical models only].
|
|
NumberLabels int64 `json:"numberLabels,omitempty,string"`
|
|
}
|
|
|
|
type TrainingModelInfoConfusionMatrix struct {
|
|
}
|
|
|
|
type TrainingModelInfoConfusionMatrixRowTotals struct {
|
|
}
|
|
|
|
type TrainingUtility struct {
|
|
}
|
|
|
|
type Update struct {
|
|
// CsvInstance: The input features for this instance
|
|
CsvInstance []interface{} `json:"csvInstance,omitempty"`
|
|
|
|
// Label: The class label of this instance
|
|
Label string `json:"label,omitempty"`
|
|
|
|
// Output: The generic output value - could be regression value or class
|
|
// label
|
|
Output string `json:"output,omitempty"`
|
|
}
|
|
|
|
// method id "prediction.hostedmodels.predict":
|
|
|
|
type HostedmodelsPredictCall struct {
|
|
s *Service
|
|
hostedModelName string
|
|
input *Input
|
|
opt_ map[string]interface{}
|
|
}
|
|
|
|
// Predict: Submit input and request an output against a hosted model.
|
|
func (r *HostedmodelsService) Predict(hostedModelName string, input *Input) *HostedmodelsPredictCall {
|
|
c := &HostedmodelsPredictCall{s: r.s, opt_: make(map[string]interface{})}
|
|
c.hostedModelName = hostedModelName
|
|
c.input = input
|
|
return c
|
|
}
|
|
|
|
// Fields allows partial responses to be retrieved.
|
|
// See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse
|
|
// for more information.
|
|
func (c *HostedmodelsPredictCall) Fields(s ...googleapi.Field) *HostedmodelsPredictCall {
|
|
c.opt_["fields"] = googleapi.CombineFields(s)
|
|
return c
|
|
}
|
|
|
|
func (c *HostedmodelsPredictCall) Do() (*Output, error) {
|
|
var body io.Reader = nil
|
|
body, err := googleapi.WithoutDataWrapper.JSONReader(c.input)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
ctype := "application/json"
|
|
params := make(url.Values)
|
|
params.Set("alt", "json")
|
|
if v, ok := c.opt_["fields"]; ok {
|
|
params.Set("fields", fmt.Sprintf("%v", v))
|
|
}
|
|
urls := googleapi.ResolveRelative(c.s.BasePath, "hostedmodels/{hostedModelName}/predict")
|
|
urls += "?" + params.Encode()
|
|
req, _ := http.NewRequest("POST", urls, body)
|
|
googleapi.Expand(req.URL, map[string]string{
|
|
"hostedModelName": c.hostedModelName,
|
|
})
|
|
req.Header.Set("Content-Type", ctype)
|
|
req.Header.Set("User-Agent", "google-api-go-client/0.5")
|
|
res, err := c.s.client.Do(req)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer googleapi.CloseBody(res)
|
|
if err := googleapi.CheckResponse(res); err != nil {
|
|
return nil, err
|
|
}
|
|
var ret *Output
|
|
if err := json.NewDecoder(res.Body).Decode(&ret); err != nil {
|
|
return nil, err
|
|
}
|
|
return ret, nil
|
|
// {
|
|
// "description": "Submit input and request an output against a hosted model.",
|
|
// "httpMethod": "POST",
|
|
// "id": "prediction.hostedmodels.predict",
|
|
// "parameterOrder": [
|
|
// "hostedModelName"
|
|
// ],
|
|
// "parameters": {
|
|
// "hostedModelName": {
|
|
// "description": "The name of a hosted model.",
|
|
// "location": "path",
|
|
// "required": true,
|
|
// "type": "string"
|
|
// }
|
|
// },
|
|
// "path": "hostedmodels/{hostedModelName}/predict",
|
|
// "request": {
|
|
// "$ref": "Input"
|
|
// },
|
|
// "response": {
|
|
// "$ref": "Output"
|
|
// },
|
|
// "scopes": [
|
|
// "https://www.googleapis.com/auth/prediction"
|
|
// ]
|
|
// }
|
|
|
|
}
|
|
|
|
// method id "prediction.trainedmodels.delete":
|
|
|
|
type TrainedmodelsDeleteCall struct {
|
|
s *Service
|
|
id string
|
|
opt_ map[string]interface{}
|
|
}
|
|
|
|
// Delete: Delete a trained model.
|
|
func (r *TrainedmodelsService) Delete(id string) *TrainedmodelsDeleteCall {
|
|
c := &TrainedmodelsDeleteCall{s: r.s, opt_: make(map[string]interface{})}
|
|
c.id = id
|
|
return c
|
|
}
|
|
|
|
// Fields allows partial responses to be retrieved.
|
|
// See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse
|
|
// for more information.
|
|
func (c *TrainedmodelsDeleteCall) Fields(s ...googleapi.Field) *TrainedmodelsDeleteCall {
|
|
c.opt_["fields"] = googleapi.CombineFields(s)
|
|
return c
|
|
}
|
|
|
|
func (c *TrainedmodelsDeleteCall) Do() error {
|
|
var body io.Reader = nil
|
|
params := make(url.Values)
|
|
params.Set("alt", "json")
|
|
if v, ok := c.opt_["fields"]; ok {
|
|
params.Set("fields", fmt.Sprintf("%v", v))
|
|
}
|
|
urls := googleapi.ResolveRelative(c.s.BasePath, "trainedmodels/{id}")
|
|
urls += "?" + params.Encode()
|
|
req, _ := http.NewRequest("DELETE", urls, body)
|
|
googleapi.Expand(req.URL, map[string]string{
|
|
"id": c.id,
|
|
})
|
|
req.Header.Set("User-Agent", "google-api-go-client/0.5")
|
|
res, err := c.s.client.Do(req)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
defer googleapi.CloseBody(res)
|
|
if err := googleapi.CheckResponse(res); err != nil {
|
|
return err
|
|
}
|
|
return nil
|
|
// {
|
|
// "description": "Delete a trained model.",
|
|
// "httpMethod": "DELETE",
|
|
// "id": "prediction.trainedmodels.delete",
|
|
// "parameterOrder": [
|
|
// "id"
|
|
// ],
|
|
// "parameters": {
|
|
// "id": {
|
|
// "description": "The unique name for the predictive model.",
|
|
// "location": "path",
|
|
// "required": true,
|
|
// "type": "string"
|
|
// }
|
|
// },
|
|
// "path": "trainedmodels/{id}",
|
|
// "scopes": [
|
|
// "https://www.googleapis.com/auth/prediction"
|
|
// ]
|
|
// }
|
|
|
|
}
|
|
|
|
// method id "prediction.trainedmodels.get":
|
|
|
|
type TrainedmodelsGetCall struct {
|
|
s *Service
|
|
id string
|
|
opt_ map[string]interface{}
|
|
}
|
|
|
|
// Get: Check training status of your model.
|
|
func (r *TrainedmodelsService) Get(id string) *TrainedmodelsGetCall {
|
|
c := &TrainedmodelsGetCall{s: r.s, opt_: make(map[string]interface{})}
|
|
c.id = id
|
|
return c
|
|
}
|
|
|
|
// Fields allows partial responses to be retrieved.
|
|
// See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse
|
|
// for more information.
|
|
func (c *TrainedmodelsGetCall) Fields(s ...googleapi.Field) *TrainedmodelsGetCall {
|
|
c.opt_["fields"] = googleapi.CombineFields(s)
|
|
return c
|
|
}
|
|
|
|
func (c *TrainedmodelsGetCall) Do() (*Training, error) {
|
|
var body io.Reader = nil
|
|
params := make(url.Values)
|
|
params.Set("alt", "json")
|
|
if v, ok := c.opt_["fields"]; ok {
|
|
params.Set("fields", fmt.Sprintf("%v", v))
|
|
}
|
|
urls := googleapi.ResolveRelative(c.s.BasePath, "trainedmodels/{id}")
|
|
urls += "?" + params.Encode()
|
|
req, _ := http.NewRequest("GET", urls, body)
|
|
googleapi.Expand(req.URL, map[string]string{
|
|
"id": c.id,
|
|
})
|
|
req.Header.Set("User-Agent", "google-api-go-client/0.5")
|
|
res, err := c.s.client.Do(req)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer googleapi.CloseBody(res)
|
|
if err := googleapi.CheckResponse(res); err != nil {
|
|
return nil, err
|
|
}
|
|
var ret *Training
|
|
if err := json.NewDecoder(res.Body).Decode(&ret); err != nil {
|
|
return nil, err
|
|
}
|
|
return ret, nil
|
|
// {
|
|
// "description": "Check training status of your model.",
|
|
// "httpMethod": "GET",
|
|
// "id": "prediction.trainedmodels.get",
|
|
// "parameterOrder": [
|
|
// "id"
|
|
// ],
|
|
// "parameters": {
|
|
// "id": {
|
|
// "description": "The unique name for the predictive model.",
|
|
// "location": "path",
|
|
// "required": true,
|
|
// "type": "string"
|
|
// }
|
|
// },
|
|
// "path": "trainedmodels/{id}",
|
|
// "response": {
|
|
// "$ref": "Training"
|
|
// },
|
|
// "scopes": [
|
|
// "https://www.googleapis.com/auth/prediction"
|
|
// ]
|
|
// }
|
|
|
|
}
|
|
|
|
// method id "prediction.trainedmodels.insert":
|
|
|
|
type TrainedmodelsInsertCall struct {
|
|
s *Service
|
|
training *Training
|
|
opt_ map[string]interface{}
|
|
}
|
|
|
|
// Insert: Begin training your model.
|
|
func (r *TrainedmodelsService) Insert(training *Training) *TrainedmodelsInsertCall {
|
|
c := &TrainedmodelsInsertCall{s: r.s, opt_: make(map[string]interface{})}
|
|
c.training = training
|
|
return c
|
|
}
|
|
|
|
// Fields allows partial responses to be retrieved.
|
|
// See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse
|
|
// for more information.
|
|
func (c *TrainedmodelsInsertCall) Fields(s ...googleapi.Field) *TrainedmodelsInsertCall {
|
|
c.opt_["fields"] = googleapi.CombineFields(s)
|
|
return c
|
|
}
|
|
|
|
func (c *TrainedmodelsInsertCall) Do() (*Training, error) {
|
|
var body io.Reader = nil
|
|
body, err := googleapi.WithoutDataWrapper.JSONReader(c.training)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
ctype := "application/json"
|
|
params := make(url.Values)
|
|
params.Set("alt", "json")
|
|
if v, ok := c.opt_["fields"]; ok {
|
|
params.Set("fields", fmt.Sprintf("%v", v))
|
|
}
|
|
urls := googleapi.ResolveRelative(c.s.BasePath, "trainedmodels")
|
|
urls += "?" + params.Encode()
|
|
req, _ := http.NewRequest("POST", urls, body)
|
|
googleapi.SetOpaque(req.URL)
|
|
req.Header.Set("Content-Type", ctype)
|
|
req.Header.Set("User-Agent", "google-api-go-client/0.5")
|
|
res, err := c.s.client.Do(req)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer googleapi.CloseBody(res)
|
|
if err := googleapi.CheckResponse(res); err != nil {
|
|
return nil, err
|
|
}
|
|
var ret *Training
|
|
if err := json.NewDecoder(res.Body).Decode(&ret); err != nil {
|
|
return nil, err
|
|
}
|
|
return ret, nil
|
|
// {
|
|
// "description": "Begin training your model.",
|
|
// "httpMethod": "POST",
|
|
// "id": "prediction.trainedmodels.insert",
|
|
// "path": "trainedmodels",
|
|
// "request": {
|
|
// "$ref": "Training"
|
|
// },
|
|
// "response": {
|
|
// "$ref": "Training"
|
|
// },
|
|
// "scopes": [
|
|
// "https://www.googleapis.com/auth/devstorage.full_control",
|
|
// "https://www.googleapis.com/auth/devstorage.read_only",
|
|
// "https://www.googleapis.com/auth/devstorage.read_write",
|
|
// "https://www.googleapis.com/auth/prediction"
|
|
// ]
|
|
// }
|
|
|
|
}
|
|
|
|
// method id "prediction.trainedmodels.predict":
|
|
|
|
type TrainedmodelsPredictCall struct {
|
|
s *Service
|
|
id string
|
|
input *Input
|
|
opt_ map[string]interface{}
|
|
}
|
|
|
|
// Predict: Submit model id and request a prediction
|
|
func (r *TrainedmodelsService) Predict(id string, input *Input) *TrainedmodelsPredictCall {
|
|
c := &TrainedmodelsPredictCall{s: r.s, opt_: make(map[string]interface{})}
|
|
c.id = id
|
|
c.input = input
|
|
return c
|
|
}
|
|
|
|
// Fields allows partial responses to be retrieved.
|
|
// See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse
|
|
// for more information.
|
|
func (c *TrainedmodelsPredictCall) Fields(s ...googleapi.Field) *TrainedmodelsPredictCall {
|
|
c.opt_["fields"] = googleapi.CombineFields(s)
|
|
return c
|
|
}
|
|
|
|
func (c *TrainedmodelsPredictCall) Do() (*Output, error) {
|
|
var body io.Reader = nil
|
|
body, err := googleapi.WithoutDataWrapper.JSONReader(c.input)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
ctype := "application/json"
|
|
params := make(url.Values)
|
|
params.Set("alt", "json")
|
|
if v, ok := c.opt_["fields"]; ok {
|
|
params.Set("fields", fmt.Sprintf("%v", v))
|
|
}
|
|
urls := googleapi.ResolveRelative(c.s.BasePath, "trainedmodels/{id}/predict")
|
|
urls += "?" + params.Encode()
|
|
req, _ := http.NewRequest("POST", urls, body)
|
|
googleapi.Expand(req.URL, map[string]string{
|
|
"id": c.id,
|
|
})
|
|
req.Header.Set("Content-Type", ctype)
|
|
req.Header.Set("User-Agent", "google-api-go-client/0.5")
|
|
res, err := c.s.client.Do(req)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer googleapi.CloseBody(res)
|
|
if err := googleapi.CheckResponse(res); err != nil {
|
|
return nil, err
|
|
}
|
|
var ret *Output
|
|
if err := json.NewDecoder(res.Body).Decode(&ret); err != nil {
|
|
return nil, err
|
|
}
|
|
return ret, nil
|
|
// {
|
|
// "description": "Submit model id and request a prediction",
|
|
// "httpMethod": "POST",
|
|
// "id": "prediction.trainedmodels.predict",
|
|
// "parameterOrder": [
|
|
// "id"
|
|
// ],
|
|
// "parameters": {
|
|
// "id": {
|
|
// "description": "The unique name for the predictive model.",
|
|
// "location": "path",
|
|
// "required": true,
|
|
// "type": "string"
|
|
// }
|
|
// },
|
|
// "path": "trainedmodels/{id}/predict",
|
|
// "request": {
|
|
// "$ref": "Input"
|
|
// },
|
|
// "response": {
|
|
// "$ref": "Output"
|
|
// },
|
|
// "scopes": [
|
|
// "https://www.googleapis.com/auth/prediction"
|
|
// ]
|
|
// }
|
|
|
|
}
|
|
|
|
// method id "prediction.trainedmodels.update":
|
|
|
|
type TrainedmodelsUpdateCall struct {
|
|
s *Service
|
|
id string
|
|
update *Update
|
|
opt_ map[string]interface{}
|
|
}
|
|
|
|
// Update: Add new data to a trained model.
|
|
func (r *TrainedmodelsService) Update(id string, update *Update) *TrainedmodelsUpdateCall {
|
|
c := &TrainedmodelsUpdateCall{s: r.s, opt_: make(map[string]interface{})}
|
|
c.id = id
|
|
c.update = update
|
|
return c
|
|
}
|
|
|
|
// Fields allows partial responses to be retrieved.
|
|
// See https://developers.google.com/gdata/docs/2.0/basics#PartialResponse
|
|
// for more information.
|
|
func (c *TrainedmodelsUpdateCall) Fields(s ...googleapi.Field) *TrainedmodelsUpdateCall {
|
|
c.opt_["fields"] = googleapi.CombineFields(s)
|
|
return c
|
|
}
|
|
|
|
func (c *TrainedmodelsUpdateCall) Do() (*Training, error) {
|
|
var body io.Reader = nil
|
|
body, err := googleapi.WithoutDataWrapper.JSONReader(c.update)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
ctype := "application/json"
|
|
params := make(url.Values)
|
|
params.Set("alt", "json")
|
|
if v, ok := c.opt_["fields"]; ok {
|
|
params.Set("fields", fmt.Sprintf("%v", v))
|
|
}
|
|
urls := googleapi.ResolveRelative(c.s.BasePath, "trainedmodels/{id}")
|
|
urls += "?" + params.Encode()
|
|
req, _ := http.NewRequest("PUT", urls, body)
|
|
googleapi.Expand(req.URL, map[string]string{
|
|
"id": c.id,
|
|
})
|
|
req.Header.Set("Content-Type", ctype)
|
|
req.Header.Set("User-Agent", "google-api-go-client/0.5")
|
|
res, err := c.s.client.Do(req)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
defer googleapi.CloseBody(res)
|
|
if err := googleapi.CheckResponse(res); err != nil {
|
|
return nil, err
|
|
}
|
|
var ret *Training
|
|
if err := json.NewDecoder(res.Body).Decode(&ret); err != nil {
|
|
return nil, err
|
|
}
|
|
return ret, nil
|
|
// {
|
|
// "description": "Add new data to a trained model.",
|
|
// "httpMethod": "PUT",
|
|
// "id": "prediction.trainedmodels.update",
|
|
// "parameterOrder": [
|
|
// "id"
|
|
// ],
|
|
// "parameters": {
|
|
// "id": {
|
|
// "description": "The unique name for the predictive model.",
|
|
// "location": "path",
|
|
// "required": true,
|
|
// "type": "string"
|
|
// }
|
|
// },
|
|
// "path": "trainedmodels/{id}",
|
|
// "request": {
|
|
// "$ref": "Update"
|
|
// },
|
|
// "response": {
|
|
// "$ref": "Training"
|
|
// },
|
|
// "scopes": [
|
|
// "https://www.googleapis.com/auth/prediction"
|
|
// ]
|
|
// }
|
|
|
|
}
|