dex/vendor/github.com/gtank/cryptopasta/sign.go
2016-07-26 15:51:24 -07:00

106 lines
3.3 KiB
Go

// cryptopasta - basic cryptography examples
//
// Written in 2015 by George Tankersley <george.tankersley@gmail.com>
//
// To the extent possible under law, the author(s) have dedicated all copyright
// and related and neighboring rights to this software to the public domain
// worldwide. This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication along
// with this software. If not, see // <http://creativecommons.org/publicdomain/zero/1.0/>.
// Provides message authentication and asymmetric signatures.
//
// Message authentication: HMAC SHA512/256
// This is a slight twist on the highly dependable HMAC-SHA256 that gains
// performance on 64-bit systems and consistency with our hashing
// recommendation.
//
// Asymmetric Signature: ECDSA using P256 and SHA256
// ECDSA is the best compromise between cryptographic concerns and support for
// our internal use cases (e.g. RFC7518). The Go standard library
// implementation has some protection against entropy problems, but is not
// deterministic. See
// https://github.com/golang/go/commit/8d7bf2291b095d3a2ecaa2609e1101be46d80deb
package cryptopasta
import (
"crypto/ecdsa"
"crypto/elliptic"
"crypto/hmac"
"crypto/rand"
"crypto/sha256"
"crypto/sha512"
"io"
"math/big"
)
// NewHMACKey generates a random 256-bit secret key for HMAC use.
// Because key generation is critical, it panics if the source of randomness fails.
func NewHMACKey() *[32]byte {
key := &[32]byte{}
_, err := io.ReadFull(rand.Reader, key[:])
if err != nil {
panic(err)
}
return key
}
// GenerateHMAC produces a symmetric signature using a shared secret key.
func GenerateHMAC(data []byte, key *[32]byte) []byte {
h := hmac.New(sha512.New512_256, key[:])
h.Write(data)
return h.Sum(nil)
}
// CheckHMAC securely checks the supplied MAC against a message using the shared secret key.
func CheckHMAC(data, suppliedMAC []byte, key *[32]byte) bool {
expectedMAC := GenerateHMAC(data, key)
return hmac.Equal(expectedMAC, suppliedMAC)
}
// GenerateSigningKey generates a random P-256 ECDSA private key.
func NewSigningKey() (*ecdsa.PrivateKey, error) {
key, err := ecdsa.GenerateKey(elliptic.P256(), rand.Reader)
return key, err
}
// Sign signs arbitrary data using ECDSA.
func Sign(data []byte, privkey *ecdsa.PrivateKey) ([]byte, error) {
// hash message
digest := sha256.Sum256(data)
// sign the hash
r, s, err := ecdsa.Sign(rand.Reader, privkey, digest[:])
if err != nil {
return nil, err
}
// encode the signature {R, S}
// big.Int.Bytes() will need padding in the case of leading zero bytes
params := privkey.Curve.Params()
curveOrderByteSize := params.P.BitLen() / 8
rBytes, sBytes := r.Bytes(), s.Bytes()
signature := make([]byte, curveOrderByteSize*2)
copy(signature[curveOrderByteSize-len(rBytes):], rBytes)
copy(signature[curveOrderByteSize*2-len(sBytes):], sBytes)
return signature, nil
}
// Verify checks a raw ECDSA signature.
// Returns true if it's valid and false if not.
func Verify(data, signature []byte, pubkey *ecdsa.PublicKey) bool {
// hash message
digest := sha256.Sum256(data)
curveOrderByteSize := pubkey.Curve.Params().P.BitLen() / 8
r, s := new(big.Int), new(big.Int)
r.SetBytes(signature[:curveOrderByteSize])
s.SetBytes(signature[curveOrderByteSize:])
return ecdsa.Verify(pubkey, digest[:], r, s)
}