// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package sha3 import ( "encoding/binary" ) // spongeDirection indicates the direction bytes are flowing through the sponge. type spongeDirection int const ( // spongeAbsorbing indicates that the sponge is absorbing input. spongeAbsorbing spongeDirection = iota // spongeSqueezing indicates that the sponge is being squeezed. spongeSqueezing ) const ( // maxRate is the maximum size of the internal buffer. SHAKE-256 // currently needs the largest buffer. maxRate = 168 ) type state struct { // Generic sponge components. a [25]uint64 // main state of the hash buf []byte // points into storage rate int // the number of bytes of state to use // dsbyte contains the "domain separation" value and the first bit of // the padding. In sections 6.1 and 6.2 of [1], the SHA-3 and SHAKE // functions are defined with bits appended to the message: SHA-3 // functions have 01 and SHAKE functions have 1111. Because of the way // that bits are numbered from the LSB upwards, that ends up as // 00000010b and 00001111b, respectively. Then the padding rule from // section 5.1 is applied to pad to a multiple of the rate, which // involves adding a 1 bit, zero or more zero bits and then a final one // bit. The first one bit from the padding is merged into the dsbyte // value giving 00000110b (0x06) and 00011111b (0x1f), respectively. // // [1] http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf, dsbyte byte storage [maxRate]byte // Specific to SHA-3 and SHAKE. fixedOutput bool // whether this is a fixed-ouput-length instance outputLen int // the default output size in bytes state spongeDirection // current direction of the sponge } // BlockSize returns the rate of sponge underlying this hash function. func (d *state) BlockSize() int { return d.rate } // Size returns the output size of the hash function in bytes. func (d *state) Size() int { return d.outputLen } // Reset clears the internal state by zeroing the sponge state and // the byte buffer, and setting Sponge.state to absorbing. func (d *state) Reset() { // Zero the permutation's state. for i := range d.a { d.a[i] = 0 } d.state = spongeAbsorbing d.buf = d.storage[:0] } func (d *state) clone() *state { ret := *d if ret.state == spongeAbsorbing { ret.buf = ret.storage[:len(ret.buf)] } else { ret.buf = ret.storage[d.rate-cap(d.buf) : d.rate] } return &ret } // xorIn xors a buffer into the state, byte-swapping to // little-endian as necessary; it returns the number of bytes // copied, including any zeros appended to the bytestring. func (d *state) xorIn(buf []byte) { n := len(buf) / 8 for i := 0; i < n; i++ { a := binary.LittleEndian.Uint64(buf) d.a[i] ^= a buf = buf[8:] } if len(buf) != 0 { // XOR in the last partial ulint64. a := uint64(0) for i, v := range buf { a |= uint64(v) << uint64(8*i) } d.a[n] ^= a } } // copyOut copies ulint64s to a byte buffer. func (d *state) copyOut(b []byte) { for i := 0; len(b) >= 8; i++ { binary.LittleEndian.PutUint64(b, d.a[i]) b = b[8:] } } // permute applies the KeccakF-1600 permutation. It handles // any input-output buffering. func (d *state) permute() { switch d.state { case spongeAbsorbing: // If we're absorbing, we need to xor the input into the state // before applying the permutation. d.xorIn(d.buf) d.buf = d.storage[:0] keccakF1600(&d.a) case spongeSqueezing: // If we're squeezing, we need to apply the permutatin before // copying more output. keccakF1600(&d.a) d.buf = d.storage[:d.rate] d.copyOut(d.buf) } } // pads appends the domain separation bits in dsbyte, applies // the multi-bitrate 10..1 padding rule, and permutes the state. func (d *state) padAndPermute(dsbyte byte) { if d.buf == nil { d.buf = d.storage[:0] } // Pad with this instance's domain-separator bits. We know that there's // at least one byte of space in d.buf because, if it were full, // permute would have been called to empty it. dsbyte also contains the // first one bit for the padding. See the comment in the state struct. d.buf = append(d.buf, dsbyte) zerosStart := len(d.buf) d.buf = d.storage[:d.rate] for i := zerosStart; i < d.rate; i++ { d.buf[i] = 0 } // This adds the final one bit for the padding. Because of the way that // bits are numbered from the LSB upwards, the final bit is the MSB of // the last byte. d.buf[d.rate-1] ^= 0x80 // Apply the permutation d.permute() d.state = spongeSqueezing d.buf = d.storage[:d.rate] d.copyOut(d.buf) } // Write absorbs more data into the hash's state. It produces an error // if more data is written to the ShakeHash after writing func (d *state) Write(p []byte) (written int, err error) { if d.state != spongeAbsorbing { panic("sha3: write to sponge after read") } if d.buf == nil { d.buf = d.storage[:0] } written = len(p) for len(p) > 0 { if len(d.buf) == 0 && len(p) >= d.rate { // The fast path; absorb a full "rate" bytes of input and apply the permutation. d.xorIn(p[:d.rate]) p = p[d.rate:] keccakF1600(&d.a) } else { // The slow path; buffer the input until we can fill the sponge, and then xor it in. todo := d.rate - len(d.buf) if todo > len(p) { todo = len(p) } d.buf = append(d.buf, p[:todo]...) p = p[todo:] // If the sponge is full, apply the permutation. if len(d.buf) == d.rate { d.permute() } } } return } // Read squeezes an arbitrary number of bytes from the sponge. func (d *state) Read(out []byte) (n int, err error) { // If we're still absorbing, pad and apply the permutation. if d.state == spongeAbsorbing { d.padAndPermute(d.dsbyte) } n = len(out) // Now, do the squeezing. for len(out) > 0 { n := copy(out, d.buf) d.buf = d.buf[n:] out = out[n:] // Apply the permutation if we've squeezed the sponge dry. if len(d.buf) == 0 { d.permute() } } return } // Sum applies padding to the hash state and then squeezes out the desired // number of output bytes. func (d *state) Sum(in []byte) []byte { // Make a copy of the original hash so that caller can keep writing // and summing. dup := d.clone() hash := make([]byte, dup.outputLen) dup.Read(hash) return append(in, hash...) }