forked from mystiq/dex
206 lines
6.5 KiB
Go
206 lines
6.5 KiB
Go
|
/*-
|
||
|
* Copyright 2014 Square Inc.
|
||
|
*
|
||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
* you may not use this file except in compliance with the License.
|
||
|
* You may obtain a copy of the License at
|
||
|
*
|
||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||
|
*
|
||
|
* Unless required by applicable law or agreed to in writing, software
|
||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
* See the License for the specific language governing permissions and
|
||
|
* limitations under the License.
|
||
|
*/
|
||
|
|
||
|
package jose
|
||
|
|
||
|
import (
|
||
|
"crypto/ecdsa"
|
||
|
"crypto/rand"
|
||
|
"crypto/rsa"
|
||
|
"fmt"
|
||
|
)
|
||
|
|
||
|
// Dummy encrypter for use in examples
|
||
|
var encrypter Encrypter
|
||
|
|
||
|
func Example_jWE() {
|
||
|
// Generate a public/private key pair to use for this example. The library
|
||
|
// also provides two utility functions (LoadPublicKey and LoadPrivateKey)
|
||
|
// that can be used to load keys from PEM/DER-encoded data.
|
||
|
privateKey, err := rsa.GenerateKey(rand.Reader, 2048)
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
|
||
|
// Instantiate an encrypter using RSA-OAEP with AES128-GCM. An error would
|
||
|
// indicate that the selected algorithm(s) are not currently supported.
|
||
|
publicKey := &privateKey.PublicKey
|
||
|
encrypter, err := NewEncrypter(A128GCM, Recipient{Algorithm: RSA_OAEP, Key: publicKey}, nil)
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
|
||
|
// Encrypt a sample plaintext. Calling the encrypter returns an encrypted
|
||
|
// JWE object, which can then be serialized for output afterwards. An error
|
||
|
// would indicate a problem in an underlying cryptographic primitive.
|
||
|
var plaintext = []byte("Lorem ipsum dolor sit amet")
|
||
|
object, err := encrypter.Encrypt(plaintext)
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
|
||
|
// Serialize the encrypted object using the full serialization format.
|
||
|
// Alternatively you can also use the compact format here by calling
|
||
|
// object.CompactSerialize() instead.
|
||
|
serialized := object.FullSerialize()
|
||
|
|
||
|
// Parse the serialized, encrypted JWE object. An error would indicate that
|
||
|
// the given input did not represent a valid message.
|
||
|
object, err = ParseEncrypted(serialized)
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
|
||
|
// Now we can decrypt and get back our original plaintext. An error here
|
||
|
// would indicate the the message failed to decrypt, e.g. because the auth
|
||
|
// tag was broken or the message was tampered with.
|
||
|
decrypted, err := object.Decrypt(privateKey)
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
|
||
|
fmt.Printf(string(decrypted))
|
||
|
// output: Lorem ipsum dolor sit amet
|
||
|
}
|
||
|
|
||
|
func Example_jWS() {
|
||
|
// Generate a public/private key pair to use for this example. The library
|
||
|
// also provides two utility functions (LoadPublicKey and LoadPrivateKey)
|
||
|
// that can be used to load keys from PEM/DER-encoded data.
|
||
|
privateKey, err := rsa.GenerateKey(rand.Reader, 2048)
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
|
||
|
// Instantiate a signer using RSASSA-PSS (SHA512) with the given private key.
|
||
|
signer, err := NewSigner(SigningKey{Algorithm: PS512, Key: privateKey}, nil)
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
|
||
|
// Sign a sample payload. Calling the signer returns a protected JWS object,
|
||
|
// which can then be serialized for output afterwards. An error would
|
||
|
// indicate a problem in an underlying cryptographic primitive.
|
||
|
var payload = []byte("Lorem ipsum dolor sit amet")
|
||
|
object, err := signer.Sign(payload)
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
|
||
|
// Serialize the encrypted object using the full serialization format.
|
||
|
// Alternatively you can also use the compact format here by calling
|
||
|
// object.CompactSerialize() instead.
|
||
|
serialized := object.FullSerialize()
|
||
|
|
||
|
// Parse the serialized, protected JWS object. An error would indicate that
|
||
|
// the given input did not represent a valid message.
|
||
|
object, err = ParseSigned(serialized)
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
|
||
|
// Now we can verify the signature on the payload. An error here would
|
||
|
// indicate the the message failed to verify, e.g. because the signature was
|
||
|
// broken or the message was tampered with.
|
||
|
output, err := object.Verify(&privateKey.PublicKey)
|
||
|
if err != nil {
|
||
|
panic(err)
|
||
|
}
|
||
|
|
||
|
fmt.Printf(string(output))
|
||
|
// output: Lorem ipsum dolor sit amet
|
||
|
}
|
||
|
|
||
|
func ExampleNewEncrypter_publicKey() {
|
||
|
var publicKey *rsa.PublicKey
|
||
|
|
||
|
// Instantiate an encrypter using RSA-OAEP with AES128-GCM.
|
||
|
NewEncrypter(A128GCM, Recipient{Algorithm: RSA_OAEP, Key: publicKey}, nil)
|
||
|
|
||
|
// Instantiate an encrypter using RSA-PKCS1v1.5 with AES128-CBC+HMAC.
|
||
|
NewEncrypter(A128CBC_HS256, Recipient{Algorithm: RSA1_5, Key: publicKey}, nil)
|
||
|
}
|
||
|
|
||
|
func ExampleNewEncrypter_symmetric() {
|
||
|
var sharedKey []byte
|
||
|
|
||
|
// Instantiate an encrypter using AES128-GCM with AES-GCM key wrap.
|
||
|
NewEncrypter(A128GCM, Recipient{Algorithm: A128GCMKW, Key: sharedKey}, nil)
|
||
|
|
||
|
// Instantiate an encrypter using AES128-GCM directly, w/o key wrapping.
|
||
|
NewEncrypter(A128GCM, Recipient{Algorithm: DIRECT, Key: sharedKey}, nil)
|
||
|
}
|
||
|
|
||
|
func ExampleNewSigner_publicKey() {
|
||
|
var rsaPrivateKey *rsa.PrivateKey
|
||
|
var ecdsaPrivateKey *ecdsa.PrivateKey
|
||
|
|
||
|
// Instantiate a signer using RSA-PKCS#1v1.5 with SHA-256.
|
||
|
NewSigner(SigningKey{Algorithm: RS256, Key: rsaPrivateKey}, nil)
|
||
|
|
||
|
// Instantiate a signer using ECDSA with SHA-384.
|
||
|
NewSigner(SigningKey{Algorithm: ES384, Key: ecdsaPrivateKey}, nil)
|
||
|
}
|
||
|
|
||
|
func ExampleNewSigner_symmetric() {
|
||
|
var sharedKey []byte
|
||
|
|
||
|
// Instantiate an signer using HMAC-SHA256.
|
||
|
NewSigner(SigningKey{Algorithm: HS256, Key: sharedKey}, nil)
|
||
|
|
||
|
// Instantiate an signer using HMAC-SHA512.
|
||
|
NewSigner(SigningKey{Algorithm: HS512, Key: sharedKey}, nil)
|
||
|
}
|
||
|
|
||
|
func ExampleNewMultiEncrypter() {
|
||
|
var publicKey *rsa.PublicKey
|
||
|
var sharedKey []byte
|
||
|
|
||
|
// Instantiate an encrypter using AES-GCM.
|
||
|
NewMultiEncrypter(A128GCM, []Recipient{
|
||
|
{Algorithm: A128GCMKW, Key: sharedKey},
|
||
|
{Algorithm: RSA_OAEP, Key: publicKey},
|
||
|
}, nil)
|
||
|
}
|
||
|
|
||
|
func ExampleNewMultiSigner() {
|
||
|
var privateKey *rsa.PrivateKey
|
||
|
var sharedKey []byte
|
||
|
|
||
|
// Instantiate a signer for multiple recipients.
|
||
|
NewMultiSigner([]SigningKey{
|
||
|
{Algorithm: HS256, Key: sharedKey},
|
||
|
{Algorithm: PS384, Key: privateKey},
|
||
|
}, nil)
|
||
|
}
|
||
|
|
||
|
func ExampleEncrypter_encrypt() {
|
||
|
// Encrypt a plaintext in order to get an encrypted JWE object.
|
||
|
var plaintext = []byte("This is a secret message")
|
||
|
|
||
|
encrypter.Encrypt(plaintext)
|
||
|
}
|
||
|
|
||
|
func ExampleEncrypter_encryptWithAuthData() {
|
||
|
// Encrypt a plaintext in order to get an encrypted JWE object. Also attach
|
||
|
// some additional authenticated data (AAD) to the object. Note that objects
|
||
|
// with attached AAD can only be represented using full serialization.
|
||
|
var plaintext = []byte("This is a secret message")
|
||
|
var aad = []byte("This is authenticated, but public data")
|
||
|
|
||
|
encrypter.EncryptWithAuthData(plaintext, aad)
|
||
|
}
|